Contrast Feature Dependency Pattern Mining for Controlled Experiments with Application to Driving Behavior

Qingzhe Li, Liang Zhao, Yi-Ching Lee, Yanfang Ye, Jessica Lin, Lingfei Wu

Presented by Qingzhe Li

Introduction

• Charactering the latent state in multivariate time series

Contrast Pattern in Controlled Experiments

• Goal: determine which the driving behaviors are affected or not

Problem formulation

Inputs: 1. Control Multivariate Time Series 2. Experimental Multivariate Time Series Outputs: 1. Latent state assignments 2. Contrast pattern detection 3. Contrast pattern characterization

Challenges

1. Integrally modeling the coupled outputs:

(t+1)

Resolving Challenge 1

- Proposing an integrated generative model for contrast pattern mining problem
- Joint likelihood

 $p(X, \hat{X}|Y, Z, \theta, \hat{\theta}) = p(X|Y, \theta) \cdot p(\hat{X}|\hat{Y}, Z, \theta, \hat{\theta})$

Resolving Challenge 2

Intuitions / Motivations

- The latent states are decided by environments
- The contrast patterns are decided by intervention
- The intervention is unlikely to change the latent states, i.e., $Similarity(\theta_i, \hat{\theta}_i) > Similarity(\theta_i, \theta_j)$

Technical challenge

- Flawed definition of similarity directly between two inverse covariance matrices, for example:
 - Non-interpretable single element in θ_i
 - Different scales between θ_i and θ_j
- Proposing Partial Correlation Based Regularization

$$\mathcal{R}_{\mathcal{C}}(heta, \hat{ heta}) = \lambda \cdot \sum_{k}^{K} \|
ho_k - \hat{
ho}_k \|_F^2$$

where ρ_k and $\hat{\rho}_k$ are the partial correlation matrices computed from θ_i and $\hat{\theta}_k$

Overall Objective Function

Optimization Algorithm:

- Repeat
 - Expectation-step: fix continuous variables (θ , $\hat{\theta}$) optimize discrete variables (*Y*, *Z*)
 - By formulating a dynamic programming problem
 - Maximization-step: fix *Y*, *Z* optimize θ , $\hat{\theta}$
 - By developing an ADMM based algorithm
- Until Stationarity

Experimental Result on Real-world Datasets

Predicted Latent State Assignments

Experimental Result on Real-world Datasets (cont.)

• Visualizing the learned contrast patterns

Experimental Result on Synthetic Datasets

Method	Dataset 1		1	D	ataset 2		Dataset		3	
	Y	\hat{Y}	Z	Y	\hat{Y}	Z	Y	\hat{Y}	Z	
K-means+1SVM	0.50	0.51	0.58	0.33	0.34	0.61	0.28	0.27	0.60	
K-means+EE	0.50	0.51	0.23	0.33	0.34	0.25	0.28	0.27	0.25	
K-means+IF	0.50	0.51	0.23	0.33	0.34	0.26	0.28	0.27	0.26	
K-means+LOF	0.50	0.51	0.15	0.33	0.34	0.18	0.28	0.27	0.21	
K-shape+1SVM	0.51	0.51	0.54	0.34	0.33	0.56	0.26	0.24	0.55	
K-shape+EE	0.51	0.51	0.23	0.34	0.33	0.25	0.26	0.24	0.25	
K-shape+IF	0.51	0.51	0.24	0.34	0.33	0.26	0.26	0.24	0.25	
K-shape+LOF	0.51	0.51	0.14	0.34	0.33	0.19	0.26	0.24	0.21	
TICC+1SVM	0.99	0.72	0.47	0.29	0.24	0.48	0.25	0.23	0.51	
TICC+EE	$\overline{0.99}$	0.72	0.35	0.29	0.24	0.25	0.25	0.23	0.25	
TICC+IF	0.99	0.72	0.29	0.29	0.24	0.27	0.25	0.23	0.25	
TICC+LOF	0.99	0.72	0.30	0.29	0.24	0.20	0.25	0.23	0.25	
GMM+1SVM	0.95	0.87	0.49	0.85	0.80	0.50	0.83	0.78	0.52	
GMM+EE	0.95	0.87	0.22	0.85	$\overline{0.80}$	0.22	0.83	0.78	0.24	
GMM+IF	0.95	0.87	0.23	0.85	0.80	0.24	0.83	0.78	0.25	
GMM+LOF	0.95	0.87	0.16	0.85	0.80	0.18	0.83	0.78	0.21	
Baseline $(\lambda = 0)$	0.94	0.92	0.80	0.86	0.63	0.88	0.83	0.59	0.76	
CPM-P (ours)	8.99	<u>0.99</u>	0.98	<u>099</u>	0.75	<u>0.89</u>	0.99	0.99	0.98	

TABLE II: The (macro) F_1 scores of predicted Y, \hat{Y} , and Z assignments

Only use loss function without proposed logularization outperform comparison. Our method successfully identified the latent states and the contrast patterns with high F_1 score

ivietnous without considering the coupling between the latent state and contrast patterns does NOT work