# **P**37 **A UNIFORM REPRESENTATION FOR TRAJECTORY LEARNING TASKS** GEORGE

Qingzhe Li, Jessica Lin, Liang Zhao, Huzefa Rangwala {qli10,jessica,lzhao9}@gmu.edu, rangwala@cs.gmu.edu

### **1. Introduction**

#### Motivation : Get Spatial Trajectories Under Control

| Low sampling rate<br>suffers from:<br>>Various Speeds<br>>Uneven Distribution<br>>Far from the actual<br>distance for most<br>popular trajectory | Moderate sampling<br>rate suffers from:<br>>Various Speeds<br>>Uneven Distribution<br>>Inaccurate distance<br>for most popular<br>trajectory distance | <ul> <li>High sampling rate suffers from:</li> <li>≻ High battery consumption</li> <li>≻ High computational cost</li> <li>&gt; Uneven Distribution</li> </ul> |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| distance measures                                                                                                                                | measures                                                                                                                                              |                                                                                                                                                               |  |

•



#### 2.3 Distance Measure for SIT Representation

- Best Match Euclidean Distance (BMED) by using a sliding window to handle two SITs with different lengths  $\min(EuDist(\hat{T}1, C_2^{[s, e]}))$



## 2. Methodology

#### 2.1 Notations

- A Spatial Trajectory  $T = \{P_0, P_1, \dots, P_m\}$ , where  $P_i = (x_i, y_i)$  is the the position of the sample point.
- A Step Invariant Trajectory(SIT)  $\hat{T}$  is a uniform representation of the trajectory T, where
  - $\hat{T} = \{P_0, P_0^{(1)}, \dots, P_0^{(k0)}, P_1^{\prime}, P_1^{(2)}, \dots, P_1^{(k1)}, \dots, P_m^{(km)}\}$
- > with a constant step distance r for all pairs of consecutive points.
- A Subtrajectory C<sup>[s,e]</sup> is a subsequence of a step invariant trajectory  $\hat{T}$ .
- 2.2 Translating to SIT Representation:



$$BMED(\hat{T}1,\hat{T}2) = \frac{1}{\sqrt{m}}$$

#### **3. Experiments**

