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Contrast Pattern Mining in Paired Multivariate Time Series 1

of a Controlled Driving Behavior Experiment 2

QINGZHE LI, LIANG ZHAO, YI-CHING LEE, and JESSICA LIN, George Mason University

3
The controlled experiment is an important scientific method for researchers seeking to determine the in-Q1

4
fluence of the intervention, by interpreting the contrast patterns between the temporal observations from 5
control and experimental groups (i.e., paired multivariate time series (PMTS)). Due to recent technological 6
advances and the growing popularity of sensing technology such as in-vehicle sensors and activity track- 7
ers, time series data is experiencing explosive growth in both size and complexity. This is threatening to 8
overwhelm the interpretation of control experiments, which conventionally rely on human analysts. Thus, 9
it is imperative to develop automated methods that are expected to simultaneously characterize and detect 10
the interpretable contrast patterns in PMTS generated by controlled experiments. However, a few challenges 11
prohibit existing methods from directly addressing this problem: (1) handling the coupling of contrast iden- 12
tification and pattern characterization, (2) dynamically characterizing the patterns in PMTS, and (3) min- 13
ing the contrast patterns in multiple PMTS with ubiquitous individual differences. Therefore, we propose 14
a novel framework to mine interpretable contrast patterns based on the dynamic feature dependencies for 15
PMTS through optimization. The proposed framework simultaneously characterizes the dynamic feature de- 16
pendency networks for PMTS and detects the contrast patterns. Specifically, we characterize the generative 17
process of PMTS as a probabilistic model defined by pairwise Markov random fields whose likelihoods are 18
maximized using our group graphical lasso. The model is then generalized to handle multiple PMTS and 19
solved by proposing a customized algorithm based on the expectation-maximization framework. Extensive 20
experiments demonstrate the effectiveness, scalability, and interpretability of our approach. 21
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1 INTRODUCTION 31

Controlled experiments, which are also known as randomized experiments and A/B tests, are 32
widely used in many domains, such as medicine [van Geffen et al. 2011] and biology [Agrawal 33
and Kotanen 2003]. Their primary purpose is to identify and interpret possible differences caused 34
by the intervention between control and experimental groups. In controlled experiments, the 35
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Fig. 1. The contrast patterns in PMTS (the PMTS are plotted at the top). Both time series in the PMTS
correspond to the same route with identical traffic conditions as control factors. Thus, they should experience
the same driving state at all locations. The unaffected and affected dependency networks corresponding to
three latent states are plotted at the bottom. The node in the dependency network denotes the same-colored
sensor within a small sliding window (i.e., size = 2). The widths of the edges denote the strengths of the
dependencies between the connected sensors (better seen in color).

multivariate time series generated from the control group usually needs to be exactly paired with36
the multivariate time series generated from the experimental group. Here we call the control multi-37
variate time series and experimental multivariate time series altogether as paired multivariate time38
series (PMTS). In this article, we focus on quantitatively analyzing the effects of an intervention39
(e.g., alcohol, medicine) on drivers’ driving behaviors through the PMTS data.40

The dynamically changed driving behaviors depend on the mixture of many factors, such as traf-41
fic conditions, weather, and driving skills. It is inappropriate and extremely difficult to universally42
predefine or label the driving behaviors from the multivariate times series data, which motivates43
us to model the driving behaviors in an unsupervised way. We found that the dependency net-44
works of in-vehicle sensors inferred from the multivariate time series can precisely characterize45
the driving behaviors with high interpretability. For example, the co-occurred increasing steer-46
ing wheel values and decreasing velocity values infer the dependency network of Latent State47
C shown in Figure 1, which can be easily interpreted as the “turning” behavior. However, when48
“steering wheel” and “gas pedal” have very small or zero values along with the high values on49
“brake” and steep decreasing values on “velocity,” the structure of the inferred dependency net-50
works are shown in Latent State B of Figure 1. Such a dependency network can be interpreted as51
slowing down.52
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These structural patterns should be shared by all drivers under all conditions if they try to 53
drive safely. To know the effect of the intervention on the driving behavior, a driver is asked to 54
drive twice with and without intervention on exactly the same route under an identical traffic 55
environment (i.e., the control factors), so she or he should experience the same sequence of latent 56
states (e.g., corresponding to curves, stop signs) as shown in Figure 1. Hence, although cross theQ2

57
controlled and experimental time series, the structural patterns of the dependency networks, the 58
strengths of dependencies could be changed by the intervention. For example, as the dependency 59
networks shown in the Turning column of the table in Figure 1, the dependency between “steering 60
wheel” and “velocity” is weaker, which indicates a lower capability of adjusting the steering wheel 61
according to the velocity caused by drinking alcohol. We say that there exists a contrast pattern 62
if the dependency network that characterizes the same latent driving state is changed after the 63
intervention. In addition, the driver may still be unaffected by the alcohol for some turns but 64
affected for other turns. For example, because alcohol can increase the probability of making a badQ3

65
turn, but it is unlikely to guarantee to make bad turns for all turning states. Therefore, the research 66
goal of this work is to automatically identify whether and how much the intervention makes a 67
difference in causing some “affected driving behaviors” under the same sequence of latent states. 68

Unsupervised identification and characterization of driving behaviors are an active research 69
topic. The reason unsupervised approaches [Fugiglando et al. 2019; Hallac et al. 2018, 2017b] are 70
much more popular than supervised approaches is that it is extremely difficult to obtain compre- 71
hensive, accurate, and sufficient labels. First, domain experts are still far away from having formal 72
definitions or interpretations for all of the actual driving [Vilaca et al. 2017]. Even if we were 73
given fully- and clearly defined states, it is still highly challenging and extremely labor intensive 74
for domain experts to accurately label the raw multivariate time series data. Moreover, it is also 75
extremely difficult to prepare sufficient labeled data to train powerful classification models, which 76
typically require large amounts of data. The controlled experiment described previously typically 77
contains millions of time points, tens of participants, and an exponential number of node combi- 78
nations in the dependency networks. This is typical for PMTS in controlled experiments, which 79
tend to increase rapidly in terms of their data size and complexity, quickly going far beyond the 80
capacity of data analysts using traditional statistics to process or interpret directly. It is therefore 81
imperative to develop new techniques capable of automatically (1) recognizing and characterizing 82
the driving states (e.g., turning) by learning the dynamic dependency networks in PMTS and (2) 83
discovering contrast patterns in PMTS for each driving state. 84

Although some previous works are partially related to our problem, such as time series subse- 85
quence clustering [Goldin et al. 2006; Hallac et al. 2017b], time series segmentation [Matsubara 86
et al. 2014], and contrast pattern mining [Lee et al. 2017; Liu et al. 2017], none of them can si- 87
multaneously handle both of the previously mentioned subproblems for PMTS. Several challenges 88
prevent the existing work from being directly utilized or combined to handle this problem. A 89
first challenge is 1) difficulty in the coupling of latent state characterization and contrast pattern 90
mining for PMTS. For example, to characterize one latent state using the dependency network(s), 91
we need to know whether there exists a contrast pattern. If a contrast pattern exists, we need 92
to learn two dependency networks from the control and experimental time series, respectively; 93
otherwise, we just need to learn one dependency network from both control and experimental 94
time series. Conversely, to mine the contrast pattern, we need to know how the dependency net- 95
work(s) characterize the latent state. The patterns learned by existing works that address the first 96
and second subproblems separately cannot maintain the consistency and optimality of learning. 97
A second challenge is difficulty in joint dynamic dependency networks learning for PMTS. As 98
Figure 1 shows, the dependency networks for a common latent state should always share a unique 99
structural pattern, but adding this constraint typically leads to a nonconvex problem when learn- 100
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ing the dependency networks. A third challenge is difficulty in jointly learning multiple PMTS. In101
controlled experiments, domain experts usually need to see contrast patterns with statistical sig-102
nificance in a group of individuals. There is a big challenge of eliminating the contingency caused103
by the ubiquitous individual differences when detecting the shared contrast pattern.104

To simultaneously address the preceding challenges, we propose a novel framework to mine105
the contrast patterns of dynamic dependency networks for PMTS with interpretability. The main106
contributions of this work are as follows:107

• Developing a novel framework to mine contrast patterns in the dynamic dependency networks108
of the PMTS. A novel contrast dynamic feature dependency (CDFD) pattern mining problem109
for PMTS is formulated that simultaneously optimizes latent state recognition and charac-110
terization, as well as CDFD pattern detection problems.111

• Proposing a new group graphical lasso based on a probabilistic model of PMTS. We creatively112
model the subsequence pairs in PMTS as multiple Gaussian Markov random field (MRF)113
pairs to simultaneously capture the identical conditional dependency structures and con-114
trast the patterns in each MRF pair. To achieve this, a new group graphical lasso is proposed115
by adding an L2,1-norm regularization term to our probabilistic model.116

• Generalizing the proposed graphical lasso to mine the shared contrast patterns in multiple117
PMTS. To mine the meaningful contrast pattern among multiple PMTS without contingency118
caused by the individual differences, we extend the proposed group graphical lasso model119
from one PMTS to multiple PMTS. To the best of our knowledge, this model is the first120
unified model that can simultaneously mine the shared contrast patterns and eliminate the121
influences of individual differences.122

• Developing an efficient algorithm to solve a new nonconvex and noncontinuous optimization123
problem. To optimize the proposed model, which contains both nonconvex and discrete124
terms, we propose a new algorithm based on expectation-maximization (EM) [Dempster125
et al. 1977] and the alternating direction method of multipliers (ADMM) [Boyd et al. 2011]126
that solves the proposed model efficiently and is guaranteed to converge to a locally optimal127
solution.128

• Conducting comprehensive experiments to validate the effectiveness, efficiency, robustness, and129
interpretability of our proposed approach. Extensive experiments on eight synthetic datasets130
demonstrate the effectiveness, scalability, and robustness of the proposed models and al-131
gorithms. The experiments on two real-world datasets qualitatively demonstrate the effec-132
tiveness and interpretability of the proposed methods on the mined CDFDs.133

The rest of this article is organized as follows. Section 2 reviews the related work. Section 3134
formulates the problem of CDFD pattern mining for PMTS. Section 4 presents two models to mine135
CDFD patterns in one and multiple PMTS, respectively. Our optimization algorithms are elabo-136
rated in Section 5. In Section 6, extensive experiments are conducted to evaluate the effectiveness,137
scalability, and interpretability of the proposed models and algorithms. The entire work is sum-138
marized and concluded in Section 7.139

2 RELATED WORK140

The previous work related to the research presented in this article is summarized in the following.141
Contrast pattern mining for time series. There are only a few works on contrast pattern mining142

for time series, which can be divided into two categories: distance-based contrast patterns and143
model-based contrast patterns. Distance-based contrast patterns are defined based on some time144
series distance measures. For example, Lin and Keogh [2006] extended the notion of contrast145
sets for time series that identified the subsequence that differentiates two time series based on146
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Euclidean distance. Other distance-based contrast patterns in times series such as shapelets 147
[Ye and Keogh 2009] and representative patterns [Wang et al. 2016] are developed exclusively 148
for supervised learning tasks. Unlike the CDFD pattern, their definitions are all based on some 149
distance measure. However, methods based on such definitions are unable to identify and interpret 150
latent states in controlled experiments. For model-based contrast patterns, a few researchers 151
have begun to utilize multivariate time series generated in fMRI to mine the contrast patterns 152
by proposing various network inference models [Lee et al. 2017; Liu et al. 2017]. For instance, 153
Lee et al. [2017] proposed a CNN-based deep neural network to identify contrasting dependency 154
networks inferred from the entire time series without considering the contrast pattern occurring 155
in subsequence level under a common latent state. Similarly, Liu et al. [2017] proposed a contrast 156
graphical lasso model for whole time series that derives a single contrast dependency network 157
that corresponds to two groups of time series. However, neither of these methods is able to 158
explicitly identify subsequence pairs in PMTS with CDFD patterns. 159

Time series subsequence clustering. Mining the CDFD pattern requires identifying the latent 160
states in PMTS that could be achieved by clustering the subsequences of PMTS. Clustering all over- 161
lapped time series subsequences produces meaningless results [Keogh et al. 2003] due to the reuse 162
of the data points in the overlapping subsequences. Since then, some meaningful distance-based 163
approaches have been proposed that avoided the preceding pitfall. For example, Rakthanmanon 164
et al. [2012] proposed a parameter-free minimum description length framework to meaningfully 165
cluster time series subsequences by ignoring some data. The distance-based approaches cluster 166
time series subsequences by their “shapes” as opposed to our dependency-base patterns. There are 167
also model-based time series subsequence clustering approaches such as those based on ARMA 168
[Xiong and Yeung 2004], the Gaussian Mixture model (GMM) [Banfield and Raftery 1993], and 169
hidden Markov models [Smyth 1997]. These typically consider the whole sequence, except for 170
Toeplitz inverse covariance-based clustering (TICC), proposed recently by Hallac et al. [2017b], 171
which clusters the subsequences in a single multivariate time series according to structural pat- 172
terns estimated by a graphical lasso. However, TICC only focuses on single time series and can 173
neither take into account the correlations among pairs of time series nor mine their contrast pat- 174
terns. 175

Graphical lasso for time series. Lasso [Tibshirani 1996] is an important feature selection technique 176
in the sparse feature learning domain [Du et al. 2018; Gao and Zhao 2018; Wang et al. 2018b; Zhao 177
et al. 2019]. The graphical lasso [Friedman et al. 2008] is validated as an effective and efficient 178
technique of inferring the sparse graphs [Hallac et al. 2017b; Liu et al. 2017], feeding to the graph 179
mining domain [Hassan et al. 2016]. Many graphical lasso–based models have been applied to 180
time series sparse inverse covariance matrix estimation problems [Hallac et al. 2017a, 2017b; Jung 181
et al. 2015; Veeriah et al. 2015; Yuen et al. 2018], some of which estimated sparse Gaussian inverse 182
covariance matrices for multivariate time series subsequences [Hallac et al. 2017a, 2017b], although 183
they are only able to detect the “latent states” but did not consider the contrast patterns. Others 184
[Jung et al. 2015; Veeriah et al. 2015; Yuen et al. 2018] estimated sparse Gaussian inverse covariance 185
matrices across the entire sequences of multiple univariate time series or one multivariate time 186
series. Jung et al. [2015] proposed a graphical model selection scheme based on graphical lasso for 187
stationary time series, but they applied the graphical lasso to the entire time series, which also 188
failed to capture the contrast patterns on the subsequence level under the common latent state 189
required by the controlled experiments. 190

Driving behavior modeling. Modeling driving behaviors is one of the hottest topics in multiple 191
domains, such as urban computing and autonomous driving. Most of these models are focusing on 192
modeling the driving behaviors using one of the following data types: (1) trajectory data recorded 193
by portable GPS devices and (2) multivariate time series data recorded by a controller area network 194
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Table 1. Notations

Notations Descriptions

m Count of observations in a multivariate time series
n Dimensionality of each observation
C Multivariate time series data C
w Window size parameter
X One control multivariate time series

X̂ One experimental multivariate time series

(X , X̂ ) One PMTS

(X, X̂) Multiple PMTS

P Count of PMTS in (X, X̂)

θk , θ̂k One pair of MRFs of the kth latent state to be learned

Θ(k ), Θ̂(k ) P pairs of MRFs of the kth latent state to be learned
Y Latent state assignments to be learned
Z Contrast pattern indicator to be learned
K Parameter of the latent state count
β Penalty parameter of switching between contrast and noncontrast latent states
γ Penalty parameter of switching among different latent states
λ Regularization parameter that controls the sparsity level in the MRFs
ρ ADMM penalty parameter

U , Û Scaled dual variables in the ADMM algorithm

(CAN). Each of these data types has some advantages and disadvantages in terms of granularity and195
whether or not they consider the spatial information. The models using the trajectory data [Wang196
et al. 2018a, 2019] are able to model the driving behaviors with the spatial information. However,197
they suffer from precisely characterizing the driving behaviors due to the coarse granularity of198
the trajectory data. However, the models using the multivariate time series data [Fugiglando et al.199
2019; Hallac et al. 2018; Li et al. 2019] are good at capturing inconspicuous driving behaviors but200
are unable to take the spatial information into account. Our problem requires both fine granularity201
to identify the inconspicuous contrast pattern and consideration of spatial information as one of202
the controlling factors.203

3 PROBLEM SETUP204

In this section, we first define the relevant concepts and then present the new problem of CDFD205
pattern mining for PMTS. The key notations, with brief descriptions, are listed in Table 1.206

Consider the multivariate time series shown in Figure 2. A multivariate time series207
C = [C1,C2, . . . ,Cm] is a time-ordered sequence ofm vectors where each time point Ct ∈ Rn×1208

is a multivariate observation that contains n dimensions. Unlike the data that follows independent209
and identically distributed (iid) assumption, the observation of a time point t is also dependent210
on its context, which is captured by the subsequences. Given a sliding window of size w �m, we211
define a multivariate time series subsequenceXt ∈ R1×nw asXt = [Cᵀ

t , . . . ,C
ᵀ
t+w−1],which consists212

of a concatenation of w consecutive n-d vectors starting from the t th time point. We call each213
dimension in Xt a feature, so there are nw features in Xt . Next, we denote X = [Xᵀ

1 ,X
ᵀ
2 , . . . ,X

ᵀ
T

]ᵀ,214

which stacks all subsequences of sizew inC , where X ∈ RT×nw andT =m −w + 1 is the count of215
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Fig. 2. Multivariate time series data representation.

subsequences inC . For any givenw , there is a one-to-one mapping relationship betweenC and X , 216
so we will directly use X to denote a multivariate time series in this article. 217

In multivariate time series, the sensors in each dimension can be correlated to each other, and 218
neighboring data points of the same dimension have temporal dependency. Therefore, these de- 219
pendencies may exist between any two features. The structural pattern of the feature dependency 220
network exclusively characterizes a latent state as seen in Figure 1, and a multivariate time series 221
dataX can be generated from K latent states (e.g., turning, slowing down), where the parameter K 222
is determined by users. Naturally, the feature dependency pattern of each latent state is character- 223
ized by an MRF [Kindermann and Snell 1980] among the nw features in X . Specifically, we denote 224
Gk = (Xt ,θk ) as the Gaussian MRF that generates the subsequences belonging to the kth latent 225
state, where θk ∈ Rnw×nw is the inverse covariance matrix that defines Gk and encodes the struc- 226
tural representation of the conditional independency among the features. We use Y ∈ {0, 1}T×K to 227
denote the assignments of the latent state for all time points. Specifically, Yt,k = 1 if Xt belongs to 228

the kth latent state; otherwise, Yt,k = 0. 229
In controlled experiments, time series commonly come in pairs, so the paired multivariate time 230

series is formally defined as follows. 231

Definition 3.1 (Paired Multivariate Time Series). We denote two multivariate time series asX and 232

X̂ , whereX is defined as the control time series and X̂ is the experimental time series ofX such that (1) 233

X and X̂ have the same sizeT (i.e., the count of subsequences for a givenw); (2) each pair ofXt and 234

X̂t shares the same assignment of latent state Yt ; and (3) for all k = 1, . . . ,K , their kth latent states 235

are always identical in their conditional independency structure such that supp(θk ) = supp(θ̂k ), 236
where the matrix support “supp” is defined as the index set of nonzero elements. 237

For the example shown in Figure 1, two time series in PMTS contain the same count of sub- 238
sequences for a given w , and the subsequences in the same road segment are defined to share 239
the same latent state assignments. Here, the latent state refers to the situation when a driver 240
should brake at one location, given the identical route and traffic condition, which may be dif- 241
ferent from the actual driving state. We define our contrast pattern as the differences in the de- 242
pendency strengths by letting both drives share the same latent state assignments. Formally, our 243
CDFD pattern is defined as follows. 244

Definition 3.2 (Contrast Dynamic Feature Dependency). Given a PMTS (X , X̂ ), for each sub- 245

sequence pair (Xt , X̂t ) where t = 1, . . . ,T , a contrast dynamic feature dependency pattern ex- 246

ists if and only if Xt and X̂t are generated from different MRFs defined by θk and θ̂k , where 247

supp(θk ) = supp(θ̂k ) and θk � θ̂k . The existence of the CDFD patterns are denoted by a contrast 248
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indicator Z ∈ {0, 1}T×1. Specifically, Zt = 0 when there is CDFD pattern between Xt and X̂t , and249

Zt = 1 when there is no CDFD pattern (i.e., Xt and X̂t are generated from identical MRFs).250

For example, as the dependency networks shown in the bottom of Figure 1, the CDFD pattern251

refers to the characterization of the dependency networks θk and θ̂k (i.e., within each column or252
latent state) that have an identical structural pattern but different feature dependency strengths.253
To capture the fact that the intervention (e.g., alcohol) is likely to increase the probability of the254
occurrences of CDFD patterns but unlikely to guarantee the occurrences of CDFD patterns, we255
define the problem in a more general way by introducing the contrast indicator Z to be learned256
from PMTS. Our assumption is weaker since we do not enforce all instances to presumably have257
contrast patterns but learn the patterns from the data. The problem of CDFD pattern mining for258
one PMTS is formulated as follows.259

Problem formulation. Given a PMTS (X , X̂ ), our goal is to mine its CDFD patterns that can be260
interpreted through K MRFs, which requires to (1) characterize the K latent states by learning261

their MRFs θ = {θk }Kk and θ̂ = {θ̂k }Kk , (2) determine the latent state assignments Y , and (3) decide262
the Z assignments by detecting the CDFD pattern for each subsequence.263

For the example in Figure 1, given a PMTS (X , X̂ ) obtained from the driving simulator without264

(i.e., X ) and with (i.e., X̂ ) an intervention, mining the CDFD patterns involves (1) characterizing265

the K latent states encoded by θ and θ̂ , (2) determining the latent state assignments Y for all road266
segments, and (3) deciding on the Z assignments based on whether the driving behaviors have267
been changed for each road segment.268

The preceding problem poses the following main technical challenges. The first challenge is269

difficulty in jointly learning all of the variables θk , θ̂k ,Y ,Z for each PMTS. These variables are270
correlated with each other, and thus must be jointly learned. However, there is no existing model271
that can jointly characterize them in a unified framework. The second challeng is difficulty in272
maintaining the dependencies among the paired MRFs in PMTS. As stated in Definition 3.1, the273
constraint requiring identical patterns for the conditional independency structures between the274

MRFs in each latent state, namely supp(θk ) = supp(θ̂k ), must be protected during the parame-275
ter optimization process. This constraint is inherently nonconvex, which is difficult to maintain276
effectively and efficiently during the optimization process.277

4 METHODOLOGY278

The models for mining CDFD patterns in PMTS are proposed in this section. We first propose a279
new probabilistic modeling method for PMTS in Section 4.1. Then a novel model of CDFD pattern280
mining for PMTS (CMP) is proposed to mine the CDFD in one PMTS in Section 4.2. The CMP281
model is generalized to a group CMP (GCMP) model that mines the CDFD in multiple PMTS in282
Section 4.3.283

4.1 Probabilistic Modeling of PMTS284

As Xt and X̂t are continuous variables, they are defined to be sampled from multivariate Gaussian285

distributions. When Zt = 0 (i.e., existing CDFD), Xt and X̂t are generated from the multivariate286

Gaussian distributions defined by different inverse covariance matrices θk and θ̂k , respectively:287

Xt ∼ N (Xt |θk , μk ) and X̂t ∼ N (Xt |θ̂k , μ̂k ) such that the conditional joint distribution of (Xt , X̂t )288
is289

p (Xt , X̂t |Yt,k = 1,Zt = 0) = N (Xt |θk , μk ) · N (X̂t |θ̂k , μ̂k ). (1)

Otherwise, when Zt = 1, Xt and X̂t are generated from the multivariate Gaussian distributions290

defined by the same inverse covariance matrix Θ(k ) : Xt ∼ N (Xt |θk , μk ) and X̂t ∼ N (Xt |θk , μ̂k )291
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such that the conditional joint distribution of (Xt , X̂t ) is 292

p (Xt , X̂t |Yt,k = 1,Zt = 1) = N (Xt |θk , μk ) · N (X̂t |θk , μ̂k ). (2)

Based on the preceding equations, for all time points t = 1, . . . ,T , the likelihood of (X , X̂ ) condi- 293

tioned on the parameters Y , Z , θ , and θ̂ is 294

p (X , X̂ |Y ,Z ,θ , θ̂ ) =
∏K,T

k,t
[N (Xt |θk , μk )Yt,kN (X̂t |θk , μ̂k )Yt,k ]Z t ·

[N (Xt |θk , μk )Yt,kN (X̂t |θ̂k , μ̂k )Yt,k ](1−Zt ) . (3)

4.2 CDFD Pattern Mining for One PMTS 295

This section presents our proposed model of CDFD pattern mining for one PMTS (CMP), which 296
optimizes the parameters of the probabilistic model for a single PMTS. To achieve this, three con- 297
siderations must be taken into account: (1) the maximal likelihood of the probabilistic model for 298
PMTS, (2) regularization on the structure of the paired MRFs for PMTS, and (3) the temporal de- 299
pendency of the latent state assignments. These are discussed in turn in the following. 300

4.2.1 Loss Function. Given a PMTS (X , X̂ ), maximizing the likelihood of Equation (3) is equiv- 301
alent to minimizing the negative log likelihood, leading to our loss function: 302

L (Y ,Z ,θ , θ̂ ) =
T ,K∑
t,k

Yt,k [Zt (−��(Xt ,θk ) − ��(X̂t ,θk )) + (1 − Zt ) (−��(Xt ,θk ) − ��(X̂t , θ̂k ))], (4)

where ��(A,B) = − 1
2 (A − μ )ᵀB (A − μ ) + 1

2 log detB − n
2 log(2π )) denotes the log likelihood that 303

the multivariate subsequence A comes from the Gaussian distribution with inverse covariance 304
matrix B. 305

4.2.2 Structural and Temporal Regularization. Due to the identical conditional independency 306
structure constraint required in Definition 1, the widely used L1-norm regularization term [Hallac 307
et al. 2017b] would not satisfy such constraint. We thus propose an L2,1-norm regularization term 308

that enforces the identical sparsity pattern in the contrast MRF pair defined by θk and θ̂k , so the 309
zero values correspond to the conditional independent relationship between the two features. Our 310

L2,1-norm regularization term is defined as
∑K

k
‖λ · [v (θk ),v (θ̂k )]‖2,1, wherev (·) is a vectorization 311

function for any input matrix and λ is the regularization parameter that determines the sparsity 312
level in the MRFs. To distinguish the dependency patterns for different latent states, the values of 313
λ should be always greater than zero since λ= 0 will lead to a clique for all MRFs and should not 314

be too large, as this will cause some learned θk and θ̂k are both equal to 0. Typically, any λ valueQ4
315

between 0.1 and 50 works well for normalized PMTS. 316
Due to the nature of temporal continuity in time series, neighboring points tend to have con- 317

sistent latent state assignments as suggested in the work of Hallac et al. [2017b]. The contrast 318
pattern has temporal dependency as well. We thus penalize the divergence between neighboring 319
time points on both the Y and Z assignments by proposing the following smoothing term: 320

hβ,γ (Y ,Z ) =
T∑
t

(β1(Zt � Zt−1) + γ1(Yt � Yt−1)),

where 1(·) is an indicator function that maps “true” values to 1 and “false” values to 0, β is the 321
penalty if Zt � Zt−1, and γ is the penalty of switching among the K latent states. Typically, setting 322
β and γ to any values between 0 and 50 will work for z-normalized PMTS. 323
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4.2.3 Objective Function. Based on the loss function and the regularization terms proposed ear-324
lier, our overall objective function is to jointly minimize them all:325

arg min
Y ,Z , {θ, θ̂ }�0

K∑
k

‖λ ◦ [v (θk ),v (θ̂k )]‖2,1 + hβ,γ (Y ,Z ) + L (Y ,Z ,θ , θ̂ ).

In addition to the regularization parameters λ, β, and γ discussed in Section 4.2.2, K and w can326
be chosen based on prior knowledge through cross validation or by a principled method such as327
the Bayesian information criterion [Schwarz et al. 1978]. If the count of subsequences assigned to328

any latent state is too small (e.g., less than 30) to learn a good θk and θ̂k , this indicates that the329
value of K should be decreased. Since the short-term temporal dependency is much stronger than330
the long-term temporal dependency in real-world applications, the window sizew should be small331
(e.g., w < 10).332

4.3 CDFD Pattern Mining for Multiple PMTS333

The CMP model proposed previously focuses on discovering the patterns for a single PMTS, but334
in many situations there are actually multiple PMTS. For example, when testing an intervention,335
multiple participants typically will be invited to test for common effects on the population based336
on all of their corresponding PMTS. In addition, it is required to collectively discover the contrast337
patterns between control and experimental time series shared by multiple PMTS.338

We therefore focus on mining the collective patterns of multiple PMTS by generalizing CMP to339
a new model named group CMP. Given P PMTS, all of the control time series are denoted as X =340

[X1, . . . ,XP ],whereas the experimental time series are X̂ = [X̂1, . . . , X̂P ]. For each PMTS (Xp , X̂p ),341

X̂p is the experimental time series corresponding to its control Xp . We denote Θ(k )
p and Θ̂(k )

p as the342

contrast inverse covariance matrices of the kth latent state, where k = 1, . . . ,K , p = 1 . . . , P and343

define Θ = {Θ(k )
p }

P,K
p,k

and Θ̂ = {Θ̂(k )
p }

P,K
p,k

; to discover shared patterns across multiple PMTS, the344

same latent state assignment and the contrast indicator must be shared by all P pairs and are thus345
still denoted as Y and Z , respectively. Moreover, as the conditional independencies of the MRFs346
across all PMTS share the same structure, for any two different pairs p and q, we have347

supp(Θ(k )
q ) = supp(Θ(k )

p ) = supp(Θ̂(k )
p ) = supp(Θ̂(k )

q ). (5)

Therefore, the problem of GCMP can be formally defined as follows. Given P PMTS, GCMP (1)348

characterizes the MRFs Θ(k )
p and Θ̂(k )

p for each state K and each pair p, (2) detects the shared latent349

state assignment Y , and (3) identifies the unified contrast indicator Z .350
The loss function for P PMTS can be generalized from the loss function for one PMTS defined in351

Equation (4):
∑P

p L (Y ,Z ,Θp , Θ̂p ). As defined in Equation (5), the MRFs for different PMTS share352
the same sparsity pattern, enabling us to propose a new group-based regularization term to enforce353

the identical sparcity pattern on all Θ(k )
p and Θ̂(k )

p such that
∑K

k
д(Θ(k ), Θ̂(k ) ), where354

д(Θ(k ), Θ̂(k ) ) = ‖λ ◦ [v (Θ(k )
1 ),v (Θ̂(k )

1 ), . . . ,v (Θ(k )
P

),v (Θ̂(k )
P

)]‖2,1.

Finally, imposing a similar penalty over the latent state assignmentY and contrast indicator Z also355
enforces their temporal continuity. The overall objective function for the GCMP problem can now356
be defined as357

arg min
Y ,Z ,Θ,Θ̂

K∑
k

д(Θ(k ), Θ̂(k ) ) + hβ,γ (Y ,Z ) +
P∑
p

L (Y ,Z ,Θp , Θ̂p ). (6)
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ALGORITHM 1: Parameter Optimization for GCMP

Require: X, X̂, λ, β, γ , w

Ensure: solution Y , Z , Θ, Θ̂
1: repeat

2: for K = 1 to K do

3: initialize Θ, Θ̂, Q, Q̂, U , Û ← 0

4: repeat

5: for p = 1 to P do

6: Θ
(k )
p ← Equation (9) // update Θ

(k )
p

7: Θ̂
(k )
p ← Equation (10) //update Θ̂

(k )
p

8: end for

9: for i = 1 to nw do

10: for j = 1 to i do

11: [Q
(k )
0,i, j , Q̂

(k )
0,i, j ]← Equation (11) //update the lower entries

12: [Q
(k )
0, j,i , Q̂

(k )
0, j,i ]← [Q

(k )
0,i, j , Q̂

(k )
0,i, j ] //make the matrices symmetric

13: end for

14: end for

15: U (k ), Û (k ) ← Equation (12)

16: until convergence

17: end for

18: E-step: optimizing Y and Z is described in Section 5.2

19: until Y and Z assignments are stationary

Comparing the objective function in Equation (6) for GCMP with the objective function introduced 358
in Section 4.2.3 for CMP reveals that the GCMP model is actually the generalization of the CMP 359
model and that when P = 1, GCMP reduces to CMP. 360

4.4 Relationship to the Related State-of-the Art Approach 361

In this section, we show that the current state-of-the-art approach—the TICC [Hallac et al. 2017b] 362
model—is actually a special case of the proposed model. 363

The TICC approach is only able to solve the second subproblem defined in Section 3 (i.e., de- 364
termine the latent state assignment Y ). In the proposed CPM model, let Zt = 1 for all t = 1, ...T , 365
which means that no contrast pattern is allowed, and the model is thus reduced to the TICC model: 366

arg min
Y ,θ �0

T ,K∑
t,k

Yt,k [−��(Xt ,θk ) − ��(X̂t ,θk )] +
T∑
t

γ1(Yt � Yt−1) +
K∑
k

‖λ ◦v (θk )‖1.

However, it would not be able to mine the contrast pattern anymore. 367

5 PARAMETER OPTIMIZATION 368

In this section, the parameter optimization algorithm for GCMP is presented and its special case 369
CMP solved by simply setting P = 1 in our algorithm. Equation (6) is a mixture of the combinational 370
optimization of discrete variables (i.e.,Y ,Z ) and nonconvex nonsmooth optimization of continuous 371

variables (i.e., Θ, Θ̂). As there is no existing algorithm capable of solving this problem efficiently 372
and effectively, we propose a new algorithm based on EM [Moon 1996] and ADMM [Boyd et al. 373
2011]. The details are summarized in Algorithm 1 that alternately optimize the continual variables 374
and discrete variables until stationary. The maximization step (M-step) described in lines 3 through 375

17 jointly optimizes Θ and Θ̂ by adapting the ADMM framework; the expectation step (E-step) is 376
performed in line 18. The M-step and E-step are described in more detail in Section 5.1 and 5.2, 377
respectively. 378
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5.1 M-step: Optimizing Θ(k ) and Θ̂(k )379

5.1.1 Decomposing GCMP intoK Subproblems. In the M-step, we fix the latent state assignment380

Y and contrast indicator Z , and optimize Θ(k ), Θ̂(k ) in parallel, for all K latent states. We therefore381
rewrite the joint likelihood term as382

P∑
p

L (Y ,Z ,Θp , Θ̂p ) =
K∑

k=1

P∑
p=1

( f (Θ(k )
p ) + f̂ (Θ̂(k )

p )) +CONST , (7)

where383

f (Θ(k )
p ) =

1

2
[|X (k,1)

p |tr (S (X (k,1)
p )Θ(k )

p ) + |X̂ (k,1)
p |tr (S (X̂ (k,1)

p )Θ(k )
p )

+ |X (k,0)
p |tr (S (X (k,0)

p )Θ(k )
p ) − ( |X (k,1)

p | + |X̂ (k,1)
p | + |X (k,0)

p |) log det Θ(k )
p ]

f̂ (Θ̂(k )
p ) =

1

2
|X̂ (k,0)

p |[tr (S (X̂ (k,0)
p )Θ̂(k )

p ) − log det Θ̂(k )
p ].

Here, P is the count of PMTS; X (k,z )
p ∈ Rc×nw is the matrix that stacks all of the subsequences384

belonging to the kth latent state with (i.e., z = 0) or without (i.e., z = 1) CDFD in Xp , where c =385

|X (k,z )
p | is the count of these subsequences. In addition, tr (·) is the trace of the matrix, and S (·) is386

a function that computes the empirical covariance matrix: S (A) = 1
|A |
∑ |A |

r=1 ArAr
ᵀ.387

According to Equation (7), Equation (6) can be optimized separately for each pair of covariances388

(Θ(k ), Θ̂(k ) ) to formulate a graphical lasso problem [Friedman et al. 2008]:389

arg min
{Θ(k )

p ,Θ̂
(k )
p }�0

д(Θ(k ), Θ̂(k ) ) +
P∑
p

( f (Θ(k )
p ) + f̂ (Θ̂(k )

p )).

5.1.2 Solving Graphical Lasso. Solving each graphical lasso problem involves exploring all of390
the sparse patterns for (nw )2 elements, and there are the K graphical lasso problems to be solved391
dozens of times before the E-M algorithm converges. However, we notice that the graphical lasso392
problem can be solved efficiently by adapting the ADMM framework after reformulating into its393

equivalent form by introducing the consensus variables Q (k ) and Q̂ (k ) :394

arg min
{Q (k ),Q̂ (k ),Θ

(k )
p ,Θ̂

(k )
p }�0

д(Θ(k ), Θ̂(k ) ) +
P∑
p

( f (Θ(k )
p ) + f̂ (Θ̂(k )

p ))

s .t ., Q (k ) = Θ(k ), Q̂ (k ) = Θ̂(k ),

of which the augmented Lagrangian form [Boyd et al. 2011] is395

Lρ (Θ(k ), Θ̂(k ),Q (k ), Q̂ (k ),U (k ), Û (k ) ) = д(Q (k ), Q̂ (k ) )

+

P∑
p

( f (Θ(k )
p ) + f̂ (Θ̂(k )

p )) − ρ

2
‖[U (k ), Û (k )]‖2F

+
ρ

2
‖[Θ(k ), Θ̂(k )] − [Q (k ), Q̂ (k )] + [U (k ), Û (k )]‖2F ,

(8)

where ρ > 0 is the ADMM [Boyd et al. 2011] penalty parameter and U and Û are the scaled dual396
variables.397

Equation (8) can be solved by iteratively updating [Θ, Θ̂], [Q, Q̂] and [U , Û ] until convergence.398
Due to the convexity of the objective function and the simplicity of the linear equality constraint,399
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the convergence is theoretically guaranteed to the global optimal solution. Each subproblem can 400
be solved as described below: 401

Updating Θ(k ) and Θ̂(k ) . All P pairs of Θ(k )
p and Θ̂(k )

p can be updated in parallel. Θ(k )
p is updated 402

by solving the following objective function: 403

arg min
Θ

(k )
p
f (Θ(k )

p ) +
ρ

2
‖Θ(k )

p −Q (k )
p +U (k )

p ‖2F .

We first set the partial derivative of the target variable Θ(k )
p to 0, then move the terms with known 404

variables to the right-hand side: 405

2ρΘ(k )
p − [|X (k,1)

p | + |X̂ (k,1)
p | + |X (k,0)

p |]Θ(k )
p

−1

= 2ρ (Q (k )
p −U (k )

p ) − [|X (k,1)
p |S (X (k,1)

p ) + |X̂ (k,1)
p |S (X̂ (k,1)

p ) + |X (0)
p |S (X (k,0)

p )].

After performing the eigendecomposition on the right-hand side of the preceding equation, the 406
solution is 407

Θ(k )
p = DΘ̃(k )Dᵀ, (9)

where the square matrix D and diagonal matrix Λ are the resulting eigenvectors 408

and eigenvalues of the eigendecomposition, respectively. In addition, Θ̃(k )
p,ii = (Λii + 409√

Λ2
ii + 8ρ ( |X (k,1)

p | + |X̂ (k,1)
p | + |X (k,0)

p |))/4ρ. 410

We update Θ̂(k )
p by solving the objective function: 411

arg min
Θ̂

(k )
p
f̂ (Θ̂(k )

p ) +
ρ

2
‖Θ̂(k )

p − Q̂ (k )
p + Û (k )

p ‖2F .

This can be solved as for Θ(k )
p . The solution is 412

Θ̂(k )
p = D ˜̂Θ(k )Dᵀ, (10)

where the square matrix D and the diagonal matrix Λ are obtained by eigendecomposition: 413

2ρ (Q̂ (k )
p − Û (k )

p ) − |X̂ (k,0)
p | · S (X̂ (0)

p ) = DΛDᵀ and ˜̂Θ(k )
p is the diagonal matrix whose ith element 414

˜̂Θ(k )
p,ii on the diagonal is (Λii +

√
Λ2

ii + 8ρ |X̂ (k,0)
p |)/4ρ. 415

Updating [Q (k ), Q̂ (k )]. [Q (k ), Q̂ (k )] is updated by solving the optimization function: 416

arg min
Q (k ),Q̂ (k )

д(Q (k ), Q̂ (k ) ) +
ρ

2
‖[Θ(k ), Θ̂(k )] − [Q (k ), Q̂ (k )] + [U (k ), Û (k )]‖2F .

This minimization problem can be solved by a group soft thresholding operators [Boyd et al. 2011]: 417

[Q (k )
0,i, j , Q̂

(k )
0,i, j ]← ηλ/rho ([Θ(k )

0,i, j , Θ̂
(k )
0,i, j ] + [U (k )

0,i, j , Û
(k )
0,i, j ]). (11)

Here, B0,i, j ∈ RP denotes the vector in a third-order tensor of size P × nw × nw where 418

B ∈ {Θ(k ), Θ̂(k ),Q (k ), Q̂ (k ),U (k ), Û (k ) }, i = 1, 2, . . . , (nw ), and j = 1, . . . , i . The group soft thresh- 419

olding function [Donoho et al. 1993] is defined as ηλ/ρ (a) = (1 − λ
ρ ‖a ‖2 )+a. 420

Updating [U (k ), Û (k )]. [U (k ), Û (k )] is updated by 421

[U (k ), Û (k )]← [U (k ), Û (k )] + [Θ(k ), Θ̂(k )] − [Q (k ), Q̂ (k )]. (12)
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Fig. 3. E-step. Optimizing Y and Z assignments can be solved by selecting one node from each layer (i.e.,
each column) to minimize the amount cost spent on the nodes and edges.Q5

5.2 E-step: Optimizing the Y, Z Assignments422

In the E-step, we fix Θ(k ) and Θ̂(k ) for all k = 1, . . . ,K , and vary the Y and Z assignment for each423
index t to minimize424

arg minY ,Z

T∑
t

(β1{Zt � Zt−1} + γ1{Yt � Yt−1}) +
T ,K∑
t,K

Yt,k [Zt Ĵ (t ,k ) + (1 − Zt ) J (t ,k )], (13)

where J (t ,k ) =
∑P

p (−��(Xp,t ,Θ
(k )
p ) − ��(X̂p,t ,Θ

(k )
p )), Ĵ (t ,k ) =

∑P
p (−��(Xp,t ,Θ

(k )
p ]) −425

��(X̂p,t , Θ̂
(k )
p )).426

The assignment optimization problem in the preceding equation can be formulated and solved427
as a classic problem of finding the minimum cost Viterbi path [Viterbi 1967] in a fully connected428
network, as shown in Figure 3. Each layer/column t represents the index of the series, and each429
row represents unique Y and Z assignments. For instance, the node J (t ,k ) denotes the cost of430

assigningYt,k = 1 andZt = 1, and node Ĵ (t ,k ) denotes the cost of assigningYt,k = 1 andZt = 0. The431
optimization problem in E-step can be solved by finding an optimal path from t= 1 to T such that432
the total cost at the edges and the nodes is minimal, which can be solved by dynamic programming433
in O (KT ) time where the current cost at each node is updated by434

J (t+1,k ) = min(Jmin (t )+γ , Ĵmin (t )+β+γ , J (t ,k ), Ĵ (t ,k )+β)

Ĵ (t+1,k ) = min( Ĵmin (t )+γ , Jmin (t )+β+γ , Ĵ (t ,k ), J (t ,k )+β),

where Jmin (t ) and Jmin (t ) are the minimal costs to the tth layer of all J -nodes and all Ĵ -nodes,435
respectively. Finally, the shortest path through the network from left to right with minimal cost is436
recovered by backtracking.437

6 EXPERIMENTS438

The performance of the proposed models is evaluated on 8 synthetic and 13 real-world datasets439
in Sections 6.1 and 6.2, respectively. All experiments were conducted on a 64-bit machine with an440
Intel processor (i7CPU@2.5 GHz) and 16 GB of memory.441

6.1 Experiments on Synthetic Datasets442

6.1.1 Experimental Setup. The generation process for the synthetic datasets, the comparison443
methods used, and the parameter settings and evaluation metrics are described in turn next.444

Generating the synthetic datasets. The process used to generate four group datasets (i.e., datasets445
5 through 8), where each dataset contains seven PMTS (i.e., P = 7), is described in the following. In446
addition, four individual experimental datasets (i.e., datasets 1 through 4) are generated by using447
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the same process by setting P = 1. Each dataset is generated 10 times, then the average perfor- 448
mance of 10 repetitive experiments is reported. 449

(1) Generating the inverse covariance matrices Θ and Θ̂. Θ(k )
p and Θ̂(k )

p need to be generated for 450
all p = 1 . . . P and k = 1 . . .K , where K is the number of latent states. To prevent the generated 451
inverse covariance matrices biasing to our model, we follow the generation process described 452
by Hallac et al. [2017b], which enforces the block Toeplitz constraint on the inverse covariance 453
matrix. Specifically, we generate the inverse covariance matrices in three steps. In the first step,Q6

454
an unweighted undirected clique with n = 5 nodes is created. In the second step, as described 455
in Figure 1, each latent driving behavior corresponds to a unique sparse structural pattern of its 456
dependency network. To simulate this, w · K unweighted and undirected Erdős-Rényi random 457

graphs E (k,v ) [Erdős et al. 2013] are generated by randomly removing 80% of the edges in the 458
clique, wherew = 5 is the window size;v = 1, . . . ,w ; and k = 1, . . . ,K . Each removed edge, which 459
reflects the conditional independency in the MRFs between the nodes/features connected, lead to 460
a zero value of the inverse covariance matrix that encodes the dependency network or MRF. In the 461

third step, for each random graph E (w,v ) , P pairs of weighted graphs encoded by adjacent matrices 462

({W (k,v )
p ,Ŵ (k,v )

p } ∈ Rn×n ) that share the identical zero entries are generated by assigning a random 463
weight to every nonzero entry, which simulates various strengths of the dependencies caused by 464
the individual differences on driving behaviors. In the fourth and final step, each pair of the inverse 465

covariance matrices (Θ(k )
p , Θ̂

(k )
p are generated by constructing a pair of wn ×wn Toeplitz matrices 466

using ({W (k,v )
p ,Ŵ (k,v )

p }. To ensure inversibility, the values in the generated inverse covarianceQ7
467

matrices are adjusted by Θ(k )
p = Θ(k )

p + (0.1 + |e |)I and Θ̂(k )
p = Θ̂(k )

p + (0.1 + |ê |)I , where e and ê 468

are the smallest eigenvalues of the corresponding Θ(k )
p and Θ̂(k )

p , respectively. 469
(2) Generating labels for the latent state assignmentY and contrast pattern indicatorZ . To simulate 470

the temporal dependency of the time series in the real world, we first select a sequence of segments 471
for the Y assignments. For example, the sequence of “1,2,1” denotes three segments assigned to 472
K = 2 latent states, where “1” and “2” denote the Latent States 1 and 2, respectively. Let each seg- 473
ment contain 100 ∗ K time points. The latent state assignments Yt,k for t = 1, . . . , 200 would be 474
Yt,1 = 1, and for t = 201, . . . , 400 and t = 401, . . . , 600 would be Yt,2 = 1 and Yt,1 = 1, respectively. 475
Following this rationale, the datasets used in this section are generated from four segment se- 476
quences: “1,2,1,” “1,2,3,2,1,” “1,2,3,4,1,2,3,4,” and “1,2,2,1,3,3,3,1.” The dataset for each sequence is 477
generated 10 times for repeating the experiments to get the average result. To determine the se- 478
quence of the Z assignments, the time points that belong to the 1/4 to 3/4 interval of each segment 479
are assigned to 0 (i.e., include CDFDs), and the remaining time points are assigned to 1. Finally, 480
50% CDFDs are intentionally removed from two out of seven PMTS to simulate the noise of which 481
some PMTS do not contain CDFD. 482

(3) Generate PMTS. Given Θ, Θ̂, Y , and Z , the process of generating PMTS is the same as that 483

described in Section 4.1. Specifically, if Yt,k = 1 and Zt = 1, Θ(k )
p is used to generate X (k )

p,t and X̂ (k )
p,t . 484

However, if Yt,k = 1 and Zt = 0, Θ(k )
p is used to generate X (k )

p,t , and Θ̂(k )
p is used to generate X̂ (k )

p,t . 485

After generating all of the PMTS data, the uniformly distributed noises between [−0.5σ , 0.5σ ] are 486
added to all observations, where σ ∈ Rn is the standard deviation of each multivariate time series. 487

Evaluation metrics. To evaluate and compare the effectiveness of the proposed methods and 488
other baseline methods on PMTS, the predicted Y and Z assignments are compared with the Y 489
and Z assignments used to generate the PMTS. To ensure a fair comparison of the effectiveness 490
of the baseline methods with our method, the number of latent states K in all of the methods is 491
fixed to the corresponding K used to generate the datasets, thus ensuring that all methods would 492
be evaluated as a K-class classification problem for Y assignments and a two-class classification 493
problem for Z assignments. Therefore, the macro F1 scores for the Y assignments are computed 494
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for all of the methods, where the macro F1 score is defined as the average of the K F1 scores where495
each is the harmonic mean of the precision and recall for predicting each class of Y assignment.496
The Z assignments are evaluated using F1 scores: the closer the (macro) F1 score to 1, the better497
the result.498

Comparison methods. To the best of our knowledge, as yet there is no integrated method capable499
of mining CDFD for PMTS generated from controlled experiments. The baseline methods therefore500
require a two-step procedure to decide the Y assignments and Z assignments separately. For step501
1 to determine the Y assignments, two methods are considered: GMM [Banfield and Raftery 1993]502
and the state-of-the-art TICC [Hallac et al. 2017b] introduced in Section 2. For step 2 to determine503
the Z assignments, this can be considered as a two-group partitioning problem over the subse-504
quence pairs in PMTS. Three distance-based methods and one model-based method are compared505
with our approach. First, in distance-based methods, for each latent state obtained from step 1, the506
distances of all subsequence pairs are computed using three distance measures for multivariate507
time series, namely the Euclidean distance, dynamic time warping–dependent (DTW-D) distance508
[Shokoohi-Yekta et al. 2017], and dynamic time warping–independent (DTW-I) [Shokoohi-Yekta509
et al. 2017] distance. The computed distances are then sorted in descending order, and the pairs510
with the top-i largest distances are assigned to contain CDFDs (i.e., Zt = 0). The macro F1 scores511
are computed for all possible values of i, and the maximal macro F1 scores of the baseline methods512
are reported in the tables. Second, in model-based methods, for each latent state obtained from step513
1, the two-component GMM [Banfield and Raftery 1993] is used to partition all subsequences in514
both the control and experimental time series belonging to the same latent state into two groups.515

For each subsequence pair (Xt , X̂t ), if Xt and X̂t are partitioned into different groups, Zt is as-516
signed to 0 (i.e., existing CDFD); otherwise, Zt = 1. In other words, the values of Zt are decided by517
an XNOR gate. Third, in the baselines using ground truth latent state assignment, to explore the518
performance of the distance-based and model-based methods only on the subproblem of contrast519
pattern detection (i.e., Z assignment), we also evaluate the comparison method by starting with520
the ground truth latent state assignments.521

Parameter settings. In effectiveness evaluation, λ = 0.5, β = 1,γ = 3 are used for our methods.522
For the TICC method, the parameters are intensively tuned to achieve the best performance. For a523
fair evaluation of the effectiveness, the values ofK andw are set the same as those used to generate524
the synthetic data for all methods.525

6.1.2 Performance on Synthetic Datasets. In this section, the effectiveness of the baseline meth-526
ods and the proposed CMP and GCMP are evaluated, and the scalability and the parameter sensi-527
tivities of the proposed approaches are tested.528

Effectiveness evaluation. The results of the effectiveness evaluation on Y assignments are shown529
in Table 2(a) and (b) for the individual and group datasets, respectively. Table 2(c) and (d) list the530
effectiveness evaluation results for Z assignments, where the two-step comparison methods witha531
plus sign show the results of Z assignments based on theY assignments predicted by the first step,532
and the comparison methods withouta plus sign show the results of Z assignments based on the533
ground truth latent state assignments.534

As the results show, our integrated methods outperform the comparison methods for both theY535
andZ assignments, whereas none of the other methods perform well on theZ assignments because536
they are unable to capture the dependency between the latent states and the CDFD patterns. As537
shown in Table 2(a) and (b), the macro F1 scores of our models on Y (i.e., latent state) assignments538
achieve the highest macro F1 scores of 0.960 on average, whereas the best comparison method539
can only achieve 0.860. These results are impressive considering that the data are noisy and are540
generated by the Toeplitz inverse covariance matrix that is not assumed by our models. In contrast,541
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Table 2. Effectiveness Performance

(a) Macro F1 scores and running time in seconds of latent state assignments Y on one PMTS

Individual Datasets Dataset 1 Dataset 2 Dataset 3 Dataset 4
Method F1 Time F1 Time F1 Time F1 Time
TICC 0.519 3.83 s 0.375 7.61 s 0.284 13.13 s 0.355 9.80 s
GMM 0.954 0.02 s 0.798 0.08 s 0.596 0.12 s 0.766 0.07 s
CMP (ours) 0.992 5.54 s 0.940 12.83 s 0.889 22.81 s 0.885 12.25 s

(b) Macro F1 scores and running time in seconds of latent state assignment Y on multiple PMTS

Group Datasets Dataset 5 Dataset 6 Dataset 7 Dataset 8
Method F1 Time F-1 Time F1 Time F1 Time
TICC 0.945 1.61 s 0.560 21.35 s 0.366 29.91 s 0.531 22.32 s
GMM 0.989 0.02 s 0.943 0.04 s 0.876 0.10 s 0.956 0.06 s
GCMP (ours) 0.989 6.47 s 0.995 12.83 s 0.995 19.55 s 0.996 15.12 s

(c) F1 scores and running time in seconds of contrast pattern indicator Z on one PMTS

Individual Datasets Dataset 1 Dataset 2 Dataset 3 Dataset 4
Method F1 Time F1 Time F1 Time F1 Time
GMM+DTW-I 0.391 6.78 s 0.410 11.73 s 0.402 19.84 s 0.386 21.33 s
GMM+Euclidean 0.434 0.43 s 0.436 1.33 s 0.44 2.24 s 0.393 3.29 s
GMM+DTW-D 0.392 2.59 s 0.415 4.69 s 0.390 8.60 s 0.393 10.05 s
TICC+Euclidean 0.491 5.43 s 0.476 10.50 s 0.475 19.64 s 0.497 18.54 s
TICC+DTW-D 0.465 6.51 s 0.470 12.28 s 0.468 22.51 s 0.498 20.92 s
TICC+GMM-XNOR 0.490 3.89 s 0.444 7.73 s 0.461 13.29 s 0.371 9.93 s
TICC+DTW-I 0.451 10.73 s 0.471 19.33 s 0.474 33.74 s 0.437 32.27 s
GMM+GMM-XNOR 0.765 0.11 s 0.706 0.22 s 0.603 0.31 s 0.591 0.27 s
Euclidean 0.462 1.51 s 0.502 2.74 s 0.515 4.88 s 0.477 6.55 s
DTW-D 0.421 2.56 s 0.469 4.46 s 0.484 7.68 s 0.481 9.34 s
DTW-I 0.421 6.68 s 0.479 11.37 s 0.482 18.81 s 0.477 20.29 s
GMM-XOR 0.810 0.08 s 0.799 0.14 s 0.824 0.19 s 0.778 0.21 s
CMP (ours) 0.869 5.54 s 0.882 10.95 s 0.886 22.81 s 0.843 12.25 s

(d) F1 scores and running time in seconds of contrast pattern indicator Z on multiple PMTSs

Group Datasets Dataset 5 Dataset 6 Dataset 7 Dataset 8
Method F1 Time F1 Time F1 Time F1 Time
GMM-Euclidean 0.478 0.47 s 0.416 1.24 s 0.391 5.03 s 0.388 4.95 s
GMM-DTW-D 0.472 0.99 s 0.416 2.18 s 0.393 7.31 s 0.402 7.42 s
GMM-DTW-I 0.454 2.43 s 0.411 6.63 s 0.415 17.32 s 0.423 13.12 s
TICC-Euclidean 0.388 2.15 s 0.471 24.86 s 0.543 39.51 s 0.433 29.77 s
TICC-DTW-D 0.388 2.61 s 0.481 25.99 s 0.550 42.14 s 0.440 31.74 s
TICC-DTW-I 0.386 4.40 s 0.473 30.35 s 0.555 51.76 s 0.453 41.05 s
TICC-GMM-XNOR 0.495 1.90 s 0.388 23.42 s 0.419 34.62 s 0.320 25.00 s
GMM-GMM-XNOR 0.469 0.08 s 0.279 0.13 s 0.350 0.29 s 0.342 0.17 s
GCMP (ours) 0.842 6.82 s 0.976 14.38 s 0.866 23.77 s 0.975 17.31 s
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Fig. 4. Per-iteration running time of our algorithm (both E-step and M-step) using a single-thread Python
program. Our proposed algorithm scales linearly with the number of time points.

TICC only achieves a macro F1 score at most 0.52 even after we intensively tuned its parameters.542
GMM runs very fast but performs worse than our models due to the absence of the temporal and543
structural regularization terms. Notice that the running time of our algorithm, as an integrated544
method, is not only for Y assignments but also for Z assignments.545

The results onZ assignments for one PMTS are shown in Table 2(c) and (d). Our methods achieve546
an average F1 score of 0.896, whereas the best two-step methods only achieve an average F1 score547
of 0.513. Even starting with the ground truth Y assignments, the best comparison method only548
achieves the average F1 score of 0.803, which is still 10% worse than our methods. The distance-549
based methods are all close to random guess because they are unable to mine the dependency550
patterns.551

In addition, the results for the group datasets validate that our GCMP model is robust enough552
to capture the CDFDs in noisy data. Furthermore, when the datasets include multiple PMTS, our553
GCMP model performs even better than the CMP model. This is because by adding an L2,1-norm554
regularization term to the probabilistic model, the GCMP model is able to take all of the PMTS555
data into account while maintaining the dependency pattern among all MRFs. It is very important556
to utilize all available data in controlled experiments that typically require the data generated by557
a group of participants.558

Scalability analysis. One iteration of our E-M-style algorithm consists of optimizing the Y and559
Z assignments in the E-step whose complexity is O (KT ) as described in the previous section,560

and optimizing Θ and Θ̂ in the M-step of whose complexity is O (T ) for computing the empirical561
covariances plus O ((nw )2) for our ADMM algorithm. Typically, our ADMM algorithm will give a562
good enough solution [Boyd et al. 2011] after a few tens of iterations, so the number of iterations563
in our ADMM algorithm is considered as a constant number. Moreover,T can potentially be in the564
millions, which is much larger thanK and nw . The total number of iterations of our E-M algorithm565
depends on the data but typically converges in dozens of iterations and thus can also be considered566
as a constant number. Therefore, the overall complexity of our algorithm can be considered as567
O (T ) in practice. To validate the scalability of the proposed algorithm, we varyT and compute the568
running time over one E-M iteration. A large dataset is generated by using n= 10,w = 3,K = 10,569
and Tmax = 106. The per-iteration running time, which contains both the E-step and M-step, is570
plotted using a log-log scale in Figure 4. Our algorithm grows almost linearly over T and is able571
to optimize the PMTS with 2 million data points in about 100 seconds per iteration using a single572
thread.573

Sensitivity tests. The sensitivities of the hyper-parameters, such asw, λ, β, andγ , are tested sepa-574
rately by using a basic setting of K = 4, λ = 10, β = 1,γ = 3,w = 5 and varying a single parameter575
each time. The individual and group datasets used here are all generated by the same sequence,576
namely datasets 3 and 7. The results of the sensitivity test are plotted in Figure 5. As the figure577
shows, both of our CMP and GCMP models are relatively insensitive to all parameters within the578
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Fig. 5. Sensitivity tests.

range shown. The sensitivities for window sizes w ranging from 2 to 12 are plotted in Figure 5(a) 579
and (b) for the individual and group datasets, respectively. Recall that the “true” window size of 580
the datasets is 5, so when w = 2, the macro F1 scores are relatively low since neither models take 581
long-term dependencies into account. When w > 8, the performance starts to decrease since the 582
model seeks to estimate long-term dependencies that do not exist in the datasets. The sensitivity 583
for the three regularization parameters are plotted in Figure 5(c) through (h), which demonstrate 584
that any values between 0.1 and 50 work well on the proposed models. 585

6.2 Experiments on Real-World Datasets 586

To demonstrate the utility of the CDFD pattern mining task, the proposed CMP and GCMP are 587
applied to a study of contrast driving behaviors by participants diagnosed with attention deficit 588
hyperactivity disorder (ADHD), a disease that influences human driving behaviors, before and 589
after taking their ADHD medication. 590

6.2.1 Experiment Setup. Thirteen real-world datasets were obtained by monitoring 13 ADHD 591
participants whose driving behaviors were recorded by a high-fidelity driving simulator. Each 592
dataset contains a pair of multivariate time series of driving data under identical traffic scenariosQ8

593
collected before and after the participants took their ADHD medication after a few weeks so that 594
they were unlikely to memorize the previous scenarios. Adding this requirement could prevent 595
influence on driving behaviors caused by memorization, which was an unrelated factor of the 596
controlled experiment. The other detailed protocols of this controlled experiment are described in 597
Lee et al. [2018]. 598

Translating to PMTS. Even though all multivariate time series were generated under the same 599
scenarios, due to the various velocities, these time series did not not perfectly match each other 600
along the time axis. However, the spatial trajectories recorded by their coordinates were very sim- 601
ilar, so instead of using timestamp values for the X axis of these PMTS, we used locations ordered 602
by time to bind the multivariate time series to form the PMTS defined in Section 3. These PMTS 603
were therefore translated from the original multivariate time series using the same trajectory to 604
bind all time series. Specifically, all PMTS were dynamically rescaled along the X axis from equal 605
time intervals to equal distance intervals in two steps. The first step entailed randomly selecting 606
one trajectory, then translating it to a step-invariant trajectory (SIT) [Li et al. 2017] to serve as 607
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the template trajectory such that the distances between any consecutive points were equal to the608
step distance parameter δ . Here, we set δ = 1 foot. In the second step, for each spatial point in the609
template trajectory, the corresponding values of the other sensors were then estimated by linear610
interpolation to obtain a PMTS dataset whose multivariate time series were all indexed by the611
same sequence of locations ordered by time.612

6.2.2 Performance of CMP. To validate the effectiveness of CMP, the model is applied to an613
individual dataset with one PMTS. For any value of K ≥ 4, the model assigns most of the points to614
four latent states, so let K = 4 for this dataset. Each of the resulting latent states can be naturally615
interpreted as a unique driving state that can be validated by observing the trajectory and the616
PMTS in Figure 6. For example, the latent state plotted in red in PMTS View can be interpreted as617
slowing down since the values of the red segments are high in the brake dimension and decreased618
in the velocity dimension; the orange latent state can be interpreted as turning since all of the619
orange segments correspond to corners, as highlighted in Trajectory View; the green latent state620
can be interpreted as driving in a straight line since the values of green segments are high in621
the gas pedal dimension and close to 0 in the steering dimension, and the blue latent state can622
be interpreted as switching lanes since the values of the blue segments are high in the steering623
dimension, then change rapidly to the other direction.624

To locate the CDFD, the segments containing CDFD (i.e., Zt = 0) are shaded. Recall that the625
edge in an MRF represents a partial correlation (PC) [Rue and Held 2005] between two connected626
features. The PC between feature F1 and feature F2, denoted as pc (F1, F2), measures their “true”627
correlation, which excludes the effect of the other features. We thus visualize the MRFs by plot-628
ting their PC networks. Due to the limited space, only the PC networks corresponding to “turning”629
are plotted in MRF View in Figure 6. Each node in the PC network represents a feature, and each630
solid/dashed edge represents a positive/negative PC. Naturally, the CDFD patterns can be visu-631
alized by plotting the differences between pc (·, ·) (i.e., before medication) and p̂c (·, ·) (i.e., after632
medication) in the residual PC View in Figure 6 whose weight of the edge between F1 and F2 is de-633
fined as r (F1, F2) = p̂c (F1, F2)−pc (F1, F2). All negative/positive weights in the residual PC network634
are plotted in blue/red, respectively.635

The CDFD can be interpreted as the different driving behaviors collected before and after medi-636
cation. For example, after medication, r (Bt ,Bt+1), r (Gt ,Gt+1), and r (Vt ,Vt+1) are all positive while637
turning, which means that these sensors at index t are more correlated to themselves at the next638
index after medication. This could be interpreted as this ADHD driver controlling the gas and639
brake pedals more smoothly after taking her or his medication, whereas r (St , St+1) < 0 suggests640
that the steering wheel is less correlated to the steering wheel at the next index, indicating that641
after taking medication, the ADHD participant is more likely to adjust the steering wheel proac-642
tively. In addition, r (Vt , St ) and r (Vt+1, St+1) are both negative, which indicates that the velocity643
is less correlated with the steering wheel, and thus safe handling of the steering wheel, when the644
velocity is high.645

To conclude, the CDFDs showed that before medication, this ADHD participant is more likely646
to turn the vehicle primarily by adjusting the gas and brake pedals. In contrast, after medication,647
the same participant is more likely to turn the vehicle by proactively adjusting the steering wheel648
based on current velocity and adjusting the gas and brake pedals more smoothly.649

6.2.3 Performance of GCMP. To validate the effectiveness of GCMP, the model is then applied650
to the group dataset with all 13 PMTS. The experimental settings are the same as those described651
Section 6.2.1. As shown in Figure 7, the results of the Y assignments and the interpretations are652
very similar to those seen previously, as all participants drove under identical traffic scenarios, so653
the drivers are mostly under the same driving state at the same location. To validate and interpret654
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Fig. 6. The contrast patterns, which show some of the driving behaviors changed by the ADHD medication,
are plotted in four views. Each latent state is plotted using a unique color in both the Trajectory and PMTS
views. In PMTS View, the multivariate time series plotted in four colors recorded the driving behaviors after
medication. Since the two multivariate time series in PMTS share the same latent state assignments, the
multivariate time series before medication is plotted in black. The road segments with contrast patterns are
shaded in grey (i.e., Zt = 0) and/or highlighted in cyan (i.e., Yt,Turning = 1 and Zt = 0). The PC networks of
latent state “turning” are plotted in MRF View, and the differences of the PC networks are plotted in Residual
PC View.

the CDFD, which contains 13 pairs of MRFs, a paired t-test is performed and plotted in t-Test PC 655
View in Figure 7. The edges in the network denote the existence of significant differences (i.e., the 656
p-value is less than 0.05) between the corresponding PCs before and after medication. Similar to 657
the residual PC network seen previously, the edges in the t-test network are plotted in red if the 658
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Fig. 7. The group contrast patterns, which show some of the driving behaviors of 13 participants, are changed
by the ADHD medication. The views are similar to Figure 6, except (1) the mean and standard deviation of
the 13 PMTSs are plotted in PMTS View, (2) 13 pairs of PC networks in the switching lane latent state are
plotted in MRF View, and (3) a paired t-test is performed on these PC networks in t-Test PC View.

PCs increased significantly after medication (i.e., a positive t-statistic); otherwise, the edges are659
plotted in blue.660

The driving state for line switching was then analyzed. Our model suggested that some segments661
that are circled in Trajectory View in Figure 7 do not contain CDFD, and others, which are high-662
lighted in PMTS and Trajectory views, contain CDFD patterns. After examining the original videos,663
the switching lane state actually contained two cases: passing a slow vehicle and avoiding a sudden664
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Fig. 8. Driver A.

cut-in vehicle. The segments marked as no CDFD (i.e., Zt = 0) mostly correspond to the former 665
cases, and the CDFD segments correspond to the latter cases. This indicates that the drivers mostly 666
drive in a similar way when they are switching lanes to pass a slow vehicle in both medication 667
conditions but switch lanes in different ways before and after medication when another vehicle 668

suddenly cuts into their current lane. In this case, the ̂PC (Bt ,Bt+1) are significantly (i.e., the p-value 669
is 0.018) less than PC (Bt ,Bt+1), signifying a stronger reaction (i.e., a weaker PC) on the brake pedals 670
when the ADHD participants switch lanes to avoid crashing into the cut-in vehicles after medica- 671

tion, and consequently the ̂PC (Vt ,Vt+1) are also significantly (i.e., the p-value is 0.00096) less than 672
PC (Vt ,Vt+1). Even though all participants successfully avoid crashes with the cut-in vehicles in 673
both medication conditions, their ways of avoiding the cut-in vehicles are quite different between 674

the before and after medication conditions. As t-Test PC View in Figure 7 illustrates, ̂PC (Vt , St ) is 675
significantly less than PC (Vt , St ), which means that these ADHD participants are more capable of 676
stabilizing their vehicles when avoiding a crash with the cut-in vehicles after medication. 677

In conclusion, the CDFDs show that after medication, the ADHD participants react by braking 678
strongly to slow down and stabilize their vehicles when interacting with cut-in vehicles, thus 679
demonstrating better driving behaviors. 680

6.3 Additional Results on Real-World Datasets 681

The contrast patterns for 4 out of 13 ADHD participants, namely driver A through driver D, are 682
plotted in Figures 8 through 11. As seen in these figures, although each PMTS is fed to our CMP 683
model independently, the latent state assignments (i.e., Y assignments) and their interpretations 684
are almost the same for all drivers, which validated the effectiveness of our CMP model again. 685
However, their contrast patterns are quite different, which can potentially be used to quantify the 686
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Fig. 9. Driver B.

Fig. 10. Driver C.
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Fig. 11. Driver D.

Table 3. Percentages of Road Segments
with Contrast Patterns

Driver A B C D
e 53.2% 83.4 46.9% 38.7%

effects of the ADHD medication on each ADHD driver’s driving behavior. The effects of the ADHD 687
medication can be quantified by our model in two aspects: 688

(1) e = count( {t |Zt=0})
T

× 100%, which is the percentage of the road segments with contrast 689
patterns (i.e., the shaded parts plotted in Figures 8 through 11 indicating that the ADHD 690
medication takes effect on the ADHD driver’s driving behaviors). Different patients have 691
different sensitivity to the medication: the higher the value of e , the more sensitive is the 692
ADHD medication to the ADHD driver. The results are shown in Table 3. For example, our 693
model suggests that driver B (i.e., eB = 83.4%) is more sensitive to the ADHD medication 694
than driver D (i.e., eD = 38.7%). 695

(2) r (·, ·) = p̂c (·, ·) − pc (·, ·), which quantifies how much difference there is between the driv- 696
ing behaviors before and after medication by the difference of the corresponding PCs. As 697
seen in Figures 8 through 11, the ADHD medication changes the driving behaviors of 698
different ADHD drivers in different ways—that is, after medication, some PCs remain the 699
same, whereas other PCs increase or decrease. More importantly, it is only meaningful 700
to quantify the changes by summarizing all of the subsequences under the same latent 701
state for controlled experiments, which prohibited the traditional methods applied to the 702
contrast pattern mining problem. 703
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7 CONCLUSION704

In this article, we proposed a novel framework to mine interpretable CDFD for PMTS in controlled705
experiments. In this framework, the CDFD pattern mining problem is formulated as an optimiza-706
tion problem that integrates latent state identification, paired dependency network inference, and707
contrast pattern detection. To model the optimization problem, we proposed a new probabilistic708
group graphical lasso that forces the identical structure constraint in paired inverse covariance709
matrices by adding an L2,1-norm regularization term. An efficient algorithm based on E-M and710
ADMM frameworks was also proposed to solve the graphical lasso. Extensive experimental eval-711
uations on synthetic datasets demonstrated the effectiveness, scalability, and robustness of the712
proposed approach. Additional experiments on real-world datasets demonstrated the utility and713
interpretability on the mined CDFDs patterns.714
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Q1: AU: Please review this article very carefully for clarity.

Q2: AU: Please rephrase sentence for clarity: “Hence, although cross the controlled...”

Q3: AU: Please rephrase sentence for clarity and to create a complete sentence: “For example,
because alcohol can increase...”

Q4: AU: Please rephrase for clarity: “...as this will cause some learned...”

Q5: AU: Please confirm phrasing in the legend to Fig. 3: “...minimize the amount cost spent...”
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Q7: AU: Please note that there is an opening parenthesis before the brace, yet there is no closing
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