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Abstract—With the rapid growth of real-time machine learning applications, the process of feature selection and model optimization
requires to integrate with the constraints on computational budgets. A specific computational resource in this regard is the time needed
for evaluating predictions on test instances. The joint optimization problem of prediction accuracy and prediction-time efficiency draws
more and more attention in the data mining and machine learning communities. The runtime cost is dominated by the feature generation
process that contains significantly redundant computations across different features that sharing the same computational component in
practice. Eliminating such redundancies would obviously reduce the time costs in the feature generation process. Our previous
Cost-aware classification using Feature computational dependencies heterogeneous Hypergraph (CAFH) model has achieved excellent
performance on the effectiveness. In the big data era, the high dimensionality caused by the heterogeneous data sources leads to the
difficulty in fitting the entire hypergraph into the main memory and the high computational cost during the optimization process. Simply
partitioning the features into batches cannot give the optimal solution since it will lose some feature dependencies across the batches.
To improve the high memory and computational costs in the CAFH model, we propose an equivalent Accelerated CAFH (ACAFH) model
based on the lossless heterogeneous hypergraph decomposition. An efficient and effective nonconvex optimization algorithm based on
the alternating direction method of multipliers (ADMM) is developed to optimize the ACAFH model. The time and space complexities of
the optimization algorithm for the ACAFH model are three and one polynomial degrees less than our previous algorithm for the CAFH
model, respectively. Extensive experiments demonstrate the proposed ACAFH model achieves competitive performance on the
effectiveness and much better performance on the efficiency.

Index Terms—Feature Computational Dependency, Cost-sensitive Learning
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1 INTRODUCTION

With the rapid growth of heterogeneous data sources, an ex-
plosive number of new features become available. Handling
high-dimensional data is one of the major challenges of the
machine learning methods in many real-world applications,
including earthquake detection [1], [2], adult content filtering
[3], and intruder detection [4]. Additional requirements from
industrial fields must be taken into account, especially the
timeliness of the prediction [5]. Moreover, given that Google
processes over 40,000 search queries every second on average
in 2018, running a machine learning algorithm on a high-
dimensional dataset is clearly impractical unless it is capable
of generating timely predictions in tens of milliseconds. Also,
as machine learning models are being applied in smaller
devices, the requirements in terms of the CPU time and
energy consumption are becoming higher and higher [6].
This means that the prediction time cost is a hurdle machine
learning must overcome if it is to be widely adopted outside
academic settings. The cost of feature extraction dominates
the test-time runtime cost, especially when linear models
such as those commonly used in industrial settings are
utilized [7], [8], [9], [10], [11]. To address this problem, in
recent years there has been a steady increase in the amount
of research on test-time cost-aware machine learning. This
research can generally be categorized into implicit and ex-
plicit methods. Implicit methods typically employ boosting,
heuristic, or greedy strategies to guide the model towards
greater test-time efficiency [12], [13], [14]. Explicit methods

• Corresponding Author: Qingzhe Li (qli10@gmu.edu) & Liang Zhao
(lzhao9@gmu.edu)

TABLE 1: An example of the features extracted from a set of raw data.
N denotes the number of elements in input feature vector x.

Feature ID:Name Description Generation Time
V1 : mean x̄ = 1

N

∑N
i=1 x(i) 0.672 microsecond

V2 : median The higher half value of a data sample. 4.365 microsecond
V3 : MAD1 MAD = median(|x(i) −median(x)|) 8.346 microsecond

V4 : STD1 σ =

√
1

N−1

∑N
i=1

(x(i) −mean(x))2 1.608 microsecond

V5 : Skewness γ = 1
N

∑N
i=1(x(i) −mean(x)/σ)3 14.917 microsecond

V6 : Kurtosis β = 1
N

∑N
i=1(x(i) −mean(x)/σ)4 14.095 microsecond

V7 : MAX H = (Max(x(i))|i=1...N ) 0.464 microsecond
V8 : MIN L = (Min(x(i))|i=1...N ) 0.652 microsecond

V9 : Mean Square (ms) MS = 1
N

∑N
i=1(x(i))2 1.147 microsecond

V10 : Root Mean Square RMS =
√
MS(x) 1.273 microsecond

V11 : Pearson’s Skewness 3 · (mean(x) −median(x))/σ 8.011 microsecond

optimize criteria involving a trade-off between prediction ac-
curacy and prediction cost [15], [16], [17]. A key observation
when minimizing test-time cost is that the costs for extracting
different feature subsets vary. For example, for intruder de-
tection, many features can be extracted from a raw input time
series, including mean and standard deviation. Naturally, the
time cost for extracting standard deviation is larger than that
required to calculate the mean. Existing methods generally
aim at the selection of those features with relatively low cost
while still achieving high prediction accuracy.

In a number of important applications, some computa-
tions for generating different features tend to be shared [18],
whereupon we refer to their generation processes as being
computationally dependent on each other. Table 1 illustrates
some of the features commonly used in signal processing
for intruder device detection. As shown in the table, the
features “mean”, “Kurtosis”, “Skewness”, “standard devia-
tion”, and “Pearson’s Skewness” all share the computation of
“mean”; the feature “MAD” also contains the computation
of “median”; and the computation for the feature “root

1. MAD: median absolute deviation; STD: standard deviation
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mean square” includes that of “mean square”. Therefore, in
our machine learning model, if both “mean” and “standard
deviation” are selected then it is only necessary to calculate
“mean” once. Similarly, if “mean square” has already been
selected, then the additional cost of adding the feature “root
mean square” requires only the calculation of the root of a
scalar value, which considerably reduces the extra time cost
incurred when including that additional feature.

Even though the apparent potential for cost reduction
resulting from the aforementioned feature computational
dependency deserves a comprehensive consideration and
treatment, as yet little attention has been paid to this is-
sue due to several technical challenges. 1) Difficulty in
optimizing the cost associated with computationally de-
pendent feature sets. To identify a globally optimal set
of features, a suitable criterion for quantifying the costs of
all possible feature set is required. Unlike the situation in
existing work, in the formulation proposed herein the total
time cost of all the features combined will no longer be
the direct summation of the respective costs for individual
features. Instead, each candidate set of features will have its
exclusive set of shared computations with the corresponding
shared time cost. Given that there are exponentially many
possible feature subsets, enumeration of the individual costs
for each of possible set is prohibitive. 2) Ineffectiveness of
convex approximation for cost optimization with feature
dependency. In addition to feature selection, which is well
known as a computationally hard problem, shared com-
putations of the selected features should be counted once
in cost optimization, which is actually a second discrete
problem in which positive integers are mapped to {0,1}.
This requirement typically cannot be satisfied by a convex
approximation such as the `p norm (p ∈ [1, 2)) as shown in
Section 4.3.1. 3) Algorithmic efficiency for a re-weighted
nonconvex-regularized problem. A complex optimization
problem with exponentially many solutions requires efficient
methods. Moreover, to ensure that the model is applicable
in real-world applications with large datasets optimization
methods that are efficient (ideally with linear complexity)
and scalable are preferred. 4) Inefficiency of optimizing
the model with tremendous and highly sparse feature
computation dependencies. With the rapid growth of het-
erogeneous data sources, the dimensionality of the data
could be very large, which causes the difficulty of fitting
all feature dependencies into the main memory during the
optimization process. Simply partitioning the features into
batches cannot give the optimal solution since it will lose
some feature dependencies across the batches. Therefore, an
effective and scalable partition way is desired without losing
the feature dependencies during the partitioning process.

Although our previously proposed Cost-Aware classifi-
cation using Feature computational dependency heteroge-
neous Hypergraph (CAFH) model [19] outperformed other
methods on the effectiveness, its efficiency on optimizing
the model still needs to be improved. Specifically, the space
and time complexity of optimizing the CAFH model are
respectively O(m2) and O(m4), where m is the number of
the features. To address the inefficiency of optimizing the
CAFH model, in this paper, we extend the CAFH model by
proposing the Accelerated CAFH (ACAFH) model, whose
effectiveness is similar to the CAFH model but can be trained

much faster with much less memory usage. The major con-
tributions of this paper are summarized as follows:
• We propose the ACAFH model based on heterogeneous

hypergraph decomposition and our previously proposed
CAFH model. The ACAFH improves the efficiency with-
out compromising the effectiveness while handling the
cost-aware classification problem under the high dimen-
sionality setting caused by multiple heterogeneous data
sources.

• We theoretically analyze the improvements in terms of
the space and time complexities while optimizing the
proposed ACAFH model. In addition, we prove the equiv-
alence between the CAFH and ACAFH models on their
optimization objectives.

• We develop an effective algorithm to solve the non-convex
problems in the proposed ACAFH model with theoretical
guarantees. The proposed algorithm is effective and scal-
able to high dimensional datasets.

• We conduct extensive experiments on eight synthetic
datasets and six real-world datasets to show the improve-
ments on the efficiency of the proposed algorithm. In
addition, we also validate the similar state-of-the-art per-
formance on effectiveness between the CAFH and ACAFH
models.

2 RELATED WORK

In this section, we first introduce our previously proposed
Cost-Aware classification using FCD heterogeneous Hyper-
graph (CAFH) methods. Then we briefly review test-time
cost-efficient models, which can be categorized into implicit
methods, explicit methods, budgeted learning models, cost-
aware data acquisition, and sparse feature learning models.

Our previously proposed CAFH method: In our previ-
ous work [19], we solved the cost-efficient machine learning
problem as an optimization problem, which minimized the
prediction error and runtime cost by optimally utilizing
the Feature Computational Dependencies (FCD) among the
different features. Specifically, we proposed to represent the
FCDs as a heterogeneous hypergraph. Then we proposed the
CAFH model that embedded the hypergraph representation
of FCD. We also proposed a tight relaxation of the original
problem to solve the discontinuous optimization problem
in the CAFH model. Finally, we developed a non-convex
optimization algorithm based on the Alternating Direction
Methods of Multipliers (ADMM) [20], [21], [22], whose ef-
fectiveness was validated on both synthetic and real-world
datasets. However, when the number of features is large and
come from different data sources, the CAFH method is the
inefficiency in terms of the space and time complexity during
the training phase.

Implicit cost-aware methods. There is typically a trade-
off between prediction accuracy and prediction cost when in-
corporating runtime into model optimization. Implicit cost-
efficient methods do not necessarily model this trade-off
directly, but tend to employ heuristic or greedy strategies
to guide the model prediction towards cost efficiency. There
is extensive research under this category, including: 1) Cas-
cades of classifiers. Here, several classifiers are ordered as a
sequence of stages. Each classifier can either reject inputs
by predicting them, or pass them on to the next stage. To
reduce the test-time cost, these cascade algorithms enforce
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that classifiers in early stages use very few and/or cheap
features and reject many easily classifiable inputs [12], [23],
[24]. 2) Decision-tree based. Decision tree (and forest) induction
methods have been extensively used for decision making
when the cost of acquiring the features are considered [25].
For example, Tan and Schlimmer [14] employed an entropy-
based strategy to estimate the cost while Ferri et al. [26]
leveraged the feature cost to prune the tree after it had been
built. Li et al. [7] employed a cost-efficient decision tree based
on a heuristic strategy to coarsely partition the feature space,
and then applied local SVM classifiers to further refine them.
3) Boosting-based. For example, Reyzin et al. [13] extended
AdaBoost and employed weak learners with fewer features
in order to reduce the feature cost.

Explicit cost-aware methods. In general, these methods
explicitly aim at a balance between prediction accuracy
and cost, for example by jointly optimizing a trade-off or
optimizing the accuracy under the constraint of a specified
cost budget. For this category, the most common method
is `1-regularization, where a sparse set of features will be
learned in order to not only ensure model generalization
but also a reduction in computational total cost [27]. To
consider the different costs of the various features, a number
of approaches have been proposed. For example, Grubb
et al. [15] proposed an algorithm for “anytime prediction”
which outputs predictions with increasing quality as the cost
budget increases. Xu et al. [28] developed Greedy Miser,
a variant of regular stage-wise regression, which updates
the selected features using a greedy optimization strategy.
Kusner et al. [17] formulated the cost-sensitive feature selec-
tion as an approximate submodular optimization problem,
while Huang and Wang [16] developed a genetic algorithm-
based method to maximize an objective function consisting
of classification accuracy and inverse cost.

Budget learning and cost-aware data acquisition. In
addition to the test-time cost, which is the focus of this paper,
several related works pay close attention to the training cost,
including budgeted learning and cost-aware data acquisi-
tion. The difference between active feature acquisition and
budgeted learning is that budgeted learning usually has a
hard budget set up-front, while active feature acquisition
does not have a hard budget [29]. For example, Deng et al.
[30] designed algorithms for the multi-armed bandit prob-
lem to select specific features for specific instances under a
limited budget. Nan and Saligrama [31] developed an adap-
tive method which learns both a low-cost and a high-cost
models by maximizing the utilization of low-cost models
while maintaining the performance, and hence controlling
total cost. Cost-aware data acquisition is commonly applied
in models for medical diagnosis. For example, Ling et al.
[32] proposed a lazy-tree learning to jointly minimize the
misclassification cost and the sum of feature costs.

However, none of the above methods considers com-
putation dependency and thus do not factor in redundant
computations among features to further reduce their com-
putational cost. To address this problem, this paper proposes
an optimization problem based on the representation of
feature computation dependency in terms of heterogeneous
hypergraphs and proposes an effective algorithm to select
those features with a low total cost.

3 PROBLEM SETUP AND OUR PREVIOUS MODEL

In this section, we first introduce the notations and present
the cost-aware classification problem, then we briefly review
how our previously model solve cost-aware classification
problem.

3.1 Problem Setup

Define X = {X1, X2, · · · , Xn} ∈ Rn×m as the input data
containing n samples under m features, where each sample
is a row vector Xj ∈ R1×m. Denote Xj,i ∈ R as the
element at index i of Xj which corresponds to a feature
vi ∈ V , where V = {v1, · · · , vm}. In addition, denote
Xj,α1 = {Xj,i|i ∈ α1} as the subspace vector of Xj where
the Greek letter in the subscript, i.e., α1, denotes a subset
of indices. Similarly, Vα1 = {vi|i ∈ α1} denotes the subset
of the features define by the subset of the indices α1. For
each Xj , there is a corresponding Yj ∈ {0, 1} such that
Yj = 1 means it is labeled as positive; Yj = 0 otherwise.
The prediction runtime consists of: 1) feature generation and
2) model prediction. The prediction runtime depends on
how many and which features are to be selected and can
be denoted as T = T1 + T2 + const, which is the sum of the
parts that are relevant and irrelevant to the selected features.
Specifically, “const” denotes the runtime that is irrelevant for
the selected features, such as the computation of the sigmoid
function when using logistic regression for prediction, given
the already calculated linear combination of all the feature
values. Moreover, T1 denotes the time for feature generation
and T2 represents the time for feature utilization, namely
the computation directly utilizing the generated features
(e.g., the first layer of neural network). For the latter, the
computation time is only relevant to the number of features
selected, while for the former, the computation time is not
only relevant to how many but also which features are
selected. For example, Table 1 shows the feature generation
runtime for 11 features.

As shown in Table 1, different features potentially share
a number of computations during their generations in which
case we say that these features have feature computational de-
pendency. When evaluating the computational cost of a group
of features, it is desirable that only distinct computations are
counted. To explicitly express the selected features U and
their time cost estimation T (U ;G) based on the feature com-
putational dependency G, the entire computational runtime
can be rewritten as T (U ;G) = T1(U ;G) + T2(U) + const,
where the feature computation dependency G is used to take
into account shared computations for all possible feature
subsets.

At a high level, our goal is to select a subset of features
U ⊆ V that can jointly achieve fast and accurate prediction.
One problem is to maximize the prediction accuracy within
the required prediction time, which can be formulated as the
minimization classification error subject to an upper bound
on the total prediction time:

min
W,U⊆V

L(Y, f(W,X)), s.t. T (U ;G) ≤ τ (1)

where τ is an upper bound on the admissible prediction
time. Moreover, W ∈ R1×k is the set of feature weights such
that Wi denotes the weight for feature vi; L(·) is the empir-
ical loss function quantifying prediction error, such as the
logistic loss or hinge loss for classification problems. Finally,
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f(W,X) denotes the corresponding classifier. Alternatively,
when there is no explicit upper bound on prediction time,
the prediction error and time cost can be jointly minimized:

min
W,U⊆V

L(Y, f(W,X)) + λT (U ;G) (2)

where λ ≥ 0 is the trade-off parameter between classification
error and time cost.

Solving the above problems in Equations (1) and (2) entail
two challenges: 1. An exponentially large number of records
in G for shared computations. Due to the existence of feature
computational dependency, each combination of features
will have its own exclusive pattern of shared computations.
However, it is not feasible to enumerate all possible feature
subsets and the associated computational costs. A concise
representation of G is mandatory as a first step towards ef-
ficient optimization. 2. The joint optimization of continuous
and discrete terms. In Equations (1) and (2), optimization for
W is a continuous problem while that in U is discrete.

4 THE ACCELERATED CAFH MODEL

To solve the cost-aware classification problem with high
dimensionality and sparse feature computational dependen-
cies, we propose the Accelerated Cost-Aware classification
using large-scale sparse FCD heterogeneous Hypergraph
(ACAFH) model in this section. The ACAFH model is equiv-
alent to our CAFH model but can be optimized much more
efficiently using less time and memory spaces. Specifically,
we first decompose the large-scale sparse FCD heteroge-
neous hypergraph into several Connected Components in
Heterogeneous Hypergraph (CCHH). Then we propose our
ACAFH model by using the CCHHs instead of the entire
heterogeneous hypergraph. After that, the original discrete
and non-convex problem in ACAFH is transformed to its
continuous equivalence. Finally, a more efficient ADMM-
based algorithm is proposed and its time and space com-
plexity are analyzed.

4.1 Large-scale Sparse FCD Heterogeneous Hyper-
graph Decomposition
In this section, we first recall the heterogeneous hypergraph
modeling of the feature computational dependency to make
this paper complete. Then, the subproblem of large-scale
sparse FCD heterogeneous hypergraph decomposition is for-
mulated. Finally, an efficient algorithm is presented to solve
the subproblem.
4.1.1 The heterogeneous hypergraph modeling for FCD
For each feature combination, in order to specify shared
computations as well as those exclusive to each feature,
the concept of “feature computation component (FCC)” is
employed. FCCs are the basic units that collectively represent
the computation process underlying the generation of all
features. For example, standard deviation would have three
FCCs, the first being the computation of “mean,” the second
being the calculation of the “standard deviation” using the
computed mean, and the third being the computation where
the prediction model utilizes the computed standard devi-
ation to make its prediction. In this example, the first two
FCCs are for feature generation while the third is for the
feature utilization by the prediction model.

This means that each feature can contain multiple FCCs
and an FCC can also be shared by multiple features. This

Fig. 1: An overview of the feature computational dependency
heterogeneous hypergraph for Table 1.

notion can be naturally captured by a hypergraph. However,
since in our problem there are two types of FCCs, one for
feature generation (Type 1) and one for utilization (Type
2), a new heterogeneous hypergraph must be formulated to
represent the feature computational dependency G, which
is subsequently referred to as feature computational de-
pendency heterogeneous hypergraph (FCD heterogeneous
hypergraph). The formal definition is as follows:

Definition 1 (FCD Heterogeneous Hypergraph). An FCD
heterogeneous hypergraph is a heterogeneous hypergraph where
a node is a feature and an hyperedge is an FCC. There are two
types of hyperedges: 1) Type 1: FCCs for feature generation. Several
nodes can be linked by the same Type-1 hyperedge if they share
the same FCC; 2) Type 2: FCCs for feature utilization. Each
feature has only one Type-2 hyperedge. More formally, denote
an FCD heterogeneous hypergraph as G = (V,E,w(E)), where
the node set is the set of features V and the hyperedge set E
is the set of all the FCCs. w(E) ∈ Rd×1 denotes the weights
of all the hyperedges and d is the cardinality of E. The weight
of hyperedge ei is represented as w(ei), denoting time cost for
the corresponding FCC. In addition, all the FCDs is denoted by
an incidence matrix H ∈ {0, 1}d×m between the nodes and
hyperedges, where Hi,j = 1 means the hyperedge ei ∈ E is an
incident edge of vj ∈ V ; and, Hi,j = 0 means ei is not connected
to vj .

The FCD heterogeneous hypergraph of the feature set in
Table 1 is shown in Figure 1. In this example, there are 11
nodes corresponding to features and 11 hyperedges denoting
the corresponding computation components. Each node is
linked to at least one hyperedge, while each hyperedge
covers at least one node. There are 7 singleton hyperedges, each
of which cover a single node, signifying that the computation
is exclusive to single features. For example, as shown in
Table 1 and Figure 1, the features “Skewness” and “standard
deviation” both include the computation component “mean”
so that these two nodes are linked by the hyperedge of the
same computation component.

The proposed FCD heterogeneous hypergraph has sev-
eral basic properties: 1) The total computation time for a
feature is the sum of all the hyperedges having connections
to it; 2) The total computation time for a set of features is
the sum of all the hyperedges having connections to them;
3) All the Type-2 hyperedges typically have equal weights
with each other; and 4) Each Type-2 hyperedge spans one
and only one node.

To reduce the optimization cost in CAFH for large-scale
sparse hypergraph, we propose to decompose the FCD Het-
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Algorithm 1 FCD Heterogeneous Hypergraph Decomposition

Require: The incidence matrix H .
Ensure: 1. the number of CCHHs K;

2. the partition of the hyperedges’ indices: {αk}Kk=1;

3. the partition of the features’ indices {βk}
K
k=1

1: global: (d,m)← size(H)
2: global: exploredFeatures← 0m×1

3: global: mapFCC2CC ← 0d×1

4: k ← 0 // the count of current CCHHs
5: global: adjcentListFCC, adjecentListFeature← toAdjcentList(H)
6: for row ← 1, · · · , d do
7: if mapFCC2CC == 0 then
8: k ← k + 1
9: global: αk ← ∅

10: global: βk ← ∅
11: DFS(row, k)
12: end if
13: end for
14: K ← k
15: return K,α,β
16: procedure: DFS(row, k)
17: if mapFCC2CC(row) == 0 then
18: mapFCC2CC(row)← k
19: αk .add(row)
20: for feature in adjcentListFCC(row) do
21: if exploredFeatures(feature) == 0 then
22: βk .add(feature)
23: exploredFeatures(feature)← 1
24: for fcc in adjcentListFeature(feature) do
25: if mapFCC2CC(fcc) == 0 then
26: DFS(fcc, k)
27: end if
28: end for
29: end if
30: end for
31: end if
32: end procedure

erogeneous Hypergraph G(V,E,w(E)) into several maximal
non-overlapping connected sub-hypergraphs, each is called
a connected component in heterogeneous hypergraph. Before we
formally formulate the FCD heterogeneous hypergraph de-
composition problem, a few concepts need to be defined.

Definition 2 (hyperpath). Given a heterogeneous hypergraph
G = (V,E,w(E)). A hyperpath exists between two vertices
{v1, v2} ∈ V if and only if either v1 and v2 share a hyperedge
or exists vi such that v1 and vi share a hyperedge, there exists a
hyperpath between vi and v2.
Definition 3 (Connected Component in Heterogeneous Hy-
pergraph (CCHH)). A connected component in heteroge-
neous hypergraph Gk = (Vβk , Eαk , w(Eαk)), where Vβk ⊆ V ,
and |Vβk | = mk, Eαk ⊆ E and |Eαk | = dk, is defined
as a maximal connected sub-graph of G, such that: 1). for all
{vi, vj} ∈ Vβk there exists a hyperpath between vi and vj ,
and 2). for any vi ∈ Vβk and for any vq /∈ Vβk there does
not exist any hyperpaths between vi and vq . The subset of the
features Vβk is determined by subset of the features’ indices
βk ⊆ {1, 2, · · · ,m}, and the subset of the hyperedges Eαk and
their weights w(Eαk) are determined by the subset of hyperedges’
indices αk ⊆ {1, 2, · · · , d}.

To find all the CCHHs in G, the problem of FCD Hetero-
geneous Hypergraph Decomposition is formulated as follows:
Problem Formulation: Given a FCD heterogeneous hyper-
graph G and its incidence matrix H ∈ {0, 1}d×m, the
goal is to find a partition way characterized by a finite
number of disjoint subsets {αk}Kk=1 and {βk}Kk=1 such that⋃K
k=1 αk = {1, 2, · · · , d},

⋃K
k=1 βk = {1, 2, · · · ,m}, and

every resulting subhypergraph Gk = (Vβk , Eαk , w(Eαk) is
a CCHH whose incidence matrix is Hαk,βk ∈ {0, 1}

dk×mk ,
where K is the number of all CCHHs to be determined.

The optimal solution of the above problem can be found

by Algorithm 1 in O(md) time based on a Deep-First-Search
(DFS) strategy. Specifically, after initializing the global vari-
ables in Lines 1-4, Line 5 converts the incidence matrix H to
two adjacent lists in O(md) time. To find the all the CCHHs
in G, Lines 6-13 traverse all FCCs and features that have
not yet been explored by using a DFS algorithm which is
elaborated in Lines 16-32. By taking the advantages of the
adjacent list data structure, the entire traversal takes only
O(md) time. Therefore, the time complexity of Algorithm 1
is still O(md).

4.2 Accelerated Cost-aware classification using FCD
Heterogeneous Hypergraph (ACAFH)

In this section, we propose the Accelerated Cost-aware clas-
sification using FCD Heterogeneous Hypergraph (ACAFH)
model that is euqivelent to our CAFH model but can be
optimized more efficiently.

To simplify the notations, we directly use Vk, Ek, and Hk

to denote Vβk , Eαk and Hαk,βk in the rest of this paper.
Following this notation style, we denote the feature weights
as Wk = Wβk ∈ Rmk×1, the time costs as Dk = Dαk ∈
Rdk×1.

The selection of a feature is indicated by its weight:
Wk,i = 0 means feature vi ∈ Vk is not being used and
thus can be ignored in the prediction phase, and Wk,i 6= 0
means it is included. Similarly, the selected features Uk ⊆ Vk
is defined as Uk = {vi|I(Wk,i) = 1, vi ∈ Vk}, where
the indicator function I(Wk,i) = 0 when Wk,i = 0 and
I(Wk,i) = 1 when Wk,i 6= 0.

The FCCs associated with the features in Uk are Ek
′ =⋃Uk

v e(v) ⊆ Ek. As {αk}Kk=1 is a partition way of the index
set of the hyperedges, for any k′ 6= k, we have Ek ∩ Ek′ = ∅
and E =

⋃K
k=1Ek. In addition, since Ek

′ ⊆ Ek, we also have
Ei
′ ∩ Ej ′ = ∅ and the selected hyperedges (i.e. FCCs) in the

hypergraph are equal to the union of the selected hyperedges
in each CCHH: E′ =

⋃K
k=1Ek

′. Therefore, the total runtime
is: T1(U ;G) + T2(U) =

∑E′

e w(e) =
∑K
k=1

∑Ek
′

e w(e). By
using the matrix representation, the total runtime can be
rewritten as:

T1(U ;G) + T2(U) =

K∑
k=1

Ek
′∑

e

w(e) =

K∑
k=1

(Dk)T · I(Hk · I(Wk)),

where the I(·) is the indicator function for vectors, which
maps all non-zero elements to 1 and maps all zero elements
to 0. D ∈ Rd×1 is a vector whose elements are the weights of
the hyperedges in FCD heterogeneous hypergraph, namely
Dk,i = w(ei) for each ith hyperedge ei ∈ Ek. In practice,
typically T1 � T2 [33], so that in some practical applications
we may only need to consider Type 1 edges. Considering
T (U ;G) = T1(U ;G) + T2(U) + const, Equations (1) and
(2) can be transformed to the following two optimization
problems, respectively:

minW L(W ), s.t.
K∑
k

(Dk)T · I(Hk · I(Wk)) ≤ τ − const, (3)

minW L(W ) + λ ·
K∑
k

(Dk)T · I(Hk · I(Wk)), (4)

where the constant term “const” has been absorbed and
the denotation of L(Y, f(W,X)) in Equation (1) has been
simplified into L(W ).
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4.3 ACAFH Optimization Objective

To optimize Equation (3) and (4), which are discrete and
nonconvex, we propose to transform the original objective
function for ACAFH to a relaxed objective function with a
set of convex constraints. As the formulations in Equations
(3) and (4) are equivalent, we will focus on the regularization
form (4) in the following.

First, Equation (4) can be simplified equivalently by re-
placing the inside indicator function with an element-wise
absolute-value operation:

minW L(W ) + λ ·
K∑
k

DT
k · I(Hk · |Wk|) (5)

where |Wk| ∈ Rmk×1 is an absolute valued vector of Wk.
Then, I(Hk · |Wk|) in Equation (5) is replaced by a simple
indicator function in an auxiliary variable Mk ∈ Rdk×1:

min
W,M
L(W ) + λ ·

K∑
k

(Dk)T · I(Mk), s.t., Mk = Hk · |Wk| (6)

which has two nonconvex parts due to the indicator function
as well as the nonlinear equality constraint. To solve this
problem, an effective continuous relaxation with convex-
equivalent constraint is derived below.

4.3.1 Continuous relaxation of ACAFH’s objective function

The discontinuity and nonconvexity of the indicator function
makes an effective and efficient optimization difficult. A
(re-weighted) `1-norm is conventionally used as a convex
relaxation of the cardinality function (aka `0-norm). But this
convex relaxation is too loose for our problem because it
totally discards feature computational dependency. Indeed,
relaxing the indicator function in (5) or (6) into the absolute
value function, one obtains the optimization problem

minW L(W ) + λ ·
K∑
k

DT
k · |Hk · |Wk||

which entails that the FCCs associated with each row of
Hk are weighted by the `1-norm of Wk; the penalty thus
is composed of individual feature contributions and hence
does not capture at all the aspect of cost sharing. In order
to take into account feature dependency, we consider a
nonconvex regularization term (which is actually concave)
that yields a tight continuous approximation to the proposed
form of discrete regularization. Specifically, we leverage a re-
weighted nonconvex regularization to achieve the approxi-
mation.

min
W,{Mk}Kk=1

L(W ) + λ ·
K∑
k=1

Rc(Mk, Dk)

s.t. ,Mk = Hk · |Wk|, ∀k = 1 . . .K

(7)

where Rc(Mk, Dk) denotes a re-weighted version of the
nonconvex regularization term such that Rc(Mk, Dk) =∑dk
i Dk,i · R(Mk,i). Here R(·) can be a commonly used

concave regularization term such as MCP, SCAD, and `p
quasi-norms (0 < p < 1) [34]. For example, when we use re-
weighted `p quasi-norms, then Rc(Mk, Dk) = ‖diag(D

1/p
k ) ·

Mk‖pp, which is easy to compute and also satisfies the triangle
inequality. Here diag(D

1/p
k ) denotes the diagonal matrix

whose diagonal elements are the vector pth root of Dk,
namely [diag(D

1/p
k )]i,i = D

1/p
k,i . As a nonsmooth component,

we can use proximal algorithms to handle the second term
when the proximal operator can be computed in closed form,
which is only the case when p is equal to some special values,
i.e., p = 1/2 or p = 2/3.

4.3.2 Convex equivalence of the nonconvex constraint
Equation (7) contains K nonconvex constraints due to the
non-linearity of |Wk|. For the kth CCHH, by introducing the
auxiliary variables B+

k ∈ Rmk×1 and B−k ∈ Rmk×1 whose
ith elements are defined as B+

k,i = max(0,Wk,i) and B−k,i =

max(−Wk,i, 0), respectively. Therefore, Wk = B+
k −B

−
k , and

we have |Wk| = B+
k + B−k if given B+

k,i · B
−
k,i = 0, for any

i = 1, · · · ,mk. Using matrix notation, we can denote |Wk| =
Ω̂k ·Bk, whereBk = [Bk

+;Bk
−] ∈ R2mk×1, Ω̂k = [Ak, Ak] ∈

{0, 1}mk×2mk where Ak denotes the identity matrix of size
mk ×mk. Similarly, we can replace W by Ω · B where B =
[B+;B−] ∈ R2m×1 and Ω ∈ [A,−A] ∈ {0, 1}m×2m.

Therefore, Equation (7) is transformed into the follow-
ing, which is also the optimization objctive function of our
ACAFH model:

min
M,B≥0

L(Ω ·B) + λ
K∑
k

·Rc(Mk, Dk)

s.t.,Mk = Hk · Ω̂k ·Bk,∀k = 1 . . .K

(8)

This indicates that the feasible set constrained by the equality
constraint in Equation (8) is convex. Now we can formally
state and prove the equivalence of Equations (7) and (8):

Theorem 1 (Equivalence of Formulations (8) and (7)). When
Rc is strictly monotonically increasing in [0,+∞), formulations
(8) and (7) are equivalent. When Rc is monotonically non-
decreasing in [0,+∞), the optimal solution of Equation (8) must
be the optimal solution of Equation (7).

Proof. The proof amounts to proving there does not exist any
integer pair (k′, i), where 1 ≤ k′ ≤ K , 1 ≤ i ≤ mk′ , and
B+
k′,i · B

−
k′,i 6= 0, such that B = {[B+

k′ ;B
−
k′ ]}Kk′ in Equation

(8) is also the optimal solution in Equation (7). We prove
by contradiction below. Assume there exists one and only
one pair of integers {k′, i|1 ≤ k′ ≤ K AND 1 ≤ i ≤
mk′ AND B+

k′,i > 0 AND B−k′,i > 0 AND B+
k′,i · B

−
k′,i 6= 0},

such that B = {[B+
k′ ;B

−
k′ ]}Kk′ is the optimal solution for both

Equation (7) and Equation (8). Now we show the contradic-
tion by first constructing a solutionB′ = {[B′+k′ ;B′

−
k′ ]}Kk′ and

then prove B′ is better (when Rc is strictly monotonically
increasing) or not worse (when Rc is monotonically non-
decreasing) than B.

We construct B′ as follows: we first let

[B′
+
k′,i;B

′−
k′,i] =

{
[B+
k,i −B

−
k,i; 0] , if B+

k′,i ≥ B
−
k′,i

[0;B−k,i −B
+
k,i] , if B+

k′,i < B−k′,i
Then for any other integer pair {b, j|(b 6= k′ OR j 6=
i) AND 1 ≤ b ≤ K, AND 1 ≤ j ≤ mb}, we simply let
[B′

+
b,j ;B

′−
b,j ] = [B+

b,j ;B
−
b,j ].

We now prove that B′ is better than B whenRc is strictly
monotonically increasing and is not worse than B when Rc
is monotonically non-decreasing. First, it is obvious that Ω ·
B ≡ Ω · B′. Base on our assumption of B+

k′,i > 0, B−k′,i > 0,
and B+

k′,i · B
−
k′,i 6= 0, it is always true for B′+k′,i + B′

−
k′,i <

B+
k′,i +B−k′,i. When j 6= i, we have B′+k′,j +B′

−
k′,j ≡ B+

k′,j +

B−k′,j . In addition, since Hk′,i ≥ 0 and none of its column
is all-zeros, which indicates there exists at least one integer
r = 1, · · · , dk′ such that satisfies Hk′,r,i = 1. Therefore, we
have M ′k′,r =

∑mk′
a=1Hk′,r,a · Ω̂k′,a,· · B′k′ <

∑mk′
a=1Hk′,r,a ·

Ω̂k′,a,· ·Bk′ = Mk′ , where Ω̂k′,a,· denotes the ath row of Ω̂k′ .
For any b 6= k′, by definition, we have M ′b ≡Mb.

Finally, we have
∑K
k Rc(M ′k, Dk) <

∑K
k Rc(Mk, Dk)

when Rc is strictly monotonically increasing, while
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k=1Rc(M ′k, Dk) ≤

∑K
k=1Rc(Mk, Dk) when Rc is mono-

tonically non-decreasing. The proof is completed.

4.4 The relationship between the ACAFH and CAFH
models

In this section, we first briefly review our previously pro-
posed CAFH model, then we show the equivalence between
the optimization objectives of the ACAFH and CAFH mod-
els.
4.4.1 Our previously proposed CAFH model
In our previous work [19], we first proposed using the
heterogeneous hypergraph to concisely model the FCDs in
the cost-aware classification problem, then we proposed the
CAFH model, which formulated the cost-aware classifica-
tion problem as an optimization problem that embedded
the incident matrix H of the hypergraph. After that, the
original discrete objective with nonconvex constraint was
relaxed to a solvable continuous optimization objective with
an equivalent convex constraint:

min
M,B≥0

L(Ω ·B) + λ · Rc(M,D)

s.t.,M = H · Ω̂ ·B,
(9)

where Ω̂ = [A,A] ∈ {0, 1}m×2m and A is the identity
matrix of size m ×m. Finally, an ADMM-based nonconvex
optimization algorithm was proposed and its convergence
property was analyzed.

Our CAFH model was developed to solve the cost-
aware classification problem when the features come from
limited number of data sources, which typically contains low
dimensionality in the dataset. For example, each data source
can only generate 11 features and 11 FCCs in Table 1, which
can be solved efficiently by our CAFH model. However, in
the era of big data, more and more datasets are collected
from a large number of data sources, which may potentially
contain millions of features and FCCs. For example, when
a dataset collected from heterogeneous data sources may
contain m = 106 features and d = 105 FCCs, the size of its
incidence matrix H will be 1011 difficult to fit the memory.
In addition, the time complexity of the CAFH optimization
algorithm is O(dm3) as we will analyze in Section 5.2, which
is over the computation capacity of the contemporary PCs
with a single CPU. Although the amount of the feature
dependencies can be very large, they barely exist across dif-
ferent data sources. Therefore, the majority costs of memory
space and computing resources are redundant and could be
optimized.
4.4.2 The equivalence between the CAFH and ACAFH
models
It is obvious that the optimization objective of CAFH model
in Equation (9) is a special case of ACAFH model’s optimiza-
tion objective in Equation (8), when the CCHH count K = 1.
Now we prove that the CAFH’s objective is still equivalent
for any number of CCHHs.

Theorem 2. The optimization objective of ACAFH model in
Equation (8) is equivalent to the optimization objective of CAFH
model in Equation (9), for any number of CCHHs K , when they
choose the same concave regularization term R(·).

Proof. Because both optimization objectives are equivalently
derived from the original problem objective in Equation (2)
except for their respective continuous relaxations, this proof
amounts to prove their relaxations are equivalent to each

Algorithm 2 ACAFH Parameter Optimization Algorithm

Require: K, {Dk, Hk,αk,βk}
K
k=1, and η.

Ensure: Solutions of B and M .
1: Initialize ρ = 1, B,M = 0,Ω = [I,−I].
2: for k = 1, · · · , K do
3: Ω̂k = [Iβk , Iβk ]
4: end for
5: Choose εp > 0 and εd > 0 // the ADMM algorithm starts here.
6: repeat
7: repeat
8: ∇ =

∂L(Ω·B)
∂B

9: ∇̂ = 0
10: for k = 1, · · · , K do
11: Bk = B(βk)

12: ∇̂βk = (HkΩ̂k)
T
HkΩ̂kBk −HkΩ̂k(Mk + Γk)

13: end for
14: B ← max(B − η(∇+ ∇̂), 0)
15: until Convergence
16: for k = 1, · · · , K do
17: for i = 1, · · · , |βk| do
18: Mk,i ← Equation (15)
19: end for
20: end for
21: Calculate the primal residual p and dual residual d.
22: if r > 10d then
23: ρ← 2ρ
24: else if 10r < d then
25: ρ← ρ/2
26: end if
27: until p < εp and d < εd

other. Formally, our goal is to prove the relaxation of ACAFH
in Equation (7) is equivalent to the relaxation of CAFH:

min
W,M
L(W ) + λ · Rc(M,D) s.t., M = H · |W |. (10)

Because Equation (7) and Equation (10) share the same
loss function and their constraints are equivalent due to
M = {Mk}Kk=1, the goal becomes to prove their regular-
ization terms are equivalent. Formally we need to prove the
following equation:

λ
K∑
k

Rc(Mk, Dk) = λRc(M,D).

By Definition 3, the set of CCHHs is actually a unique
hypergraph partition of the original hypergraph. Therefore,
we have:

λ

K∑
k

Rc(Mk, Dk) = λ

K∑
k

dk∑
i

Dk,i · R(Mk,i) note2

= λ

d∑
i

Di · R(Mi) note3

= λRc(M,D)

The proof is completed.

5 ACAFH PARAMETER OPTIMIZATION

In this section, we first propose an ADMM-based algorithm
to optimize the parameters in ACAFH model, which is
outlined in Algorithm 2. Then the space and time complexity
is analyzed and compared with CAFH.

5.1 ADMM-based algorithm for Optimizing ACAFH

Specifically, we first rewrite the optimization problem
in Equation (8) in the augmented Lagrangian form. Then
the updates of the target parameters, namely M and B,
are elaborated. Finally, the time and space complexity are

2. Sum up all hyperedges’ reweighted weights in all CCHHs decom-
posed from the hypergraph

3. Sum up all hyperedges’ reweighted weights in the hypergraph,
which is equal to previous step because they are actually share the same
set of hyperedges.
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analyzed and compared with the algorithm of the CAFH
model.

To employ the ADMM framework, the relaxed objective
function with the convex constraints in Equation (8) is trans-
formed into the augmented Lagrangian form:

Lρ(M,B)=L(ΩB)+λ

K∑
k

‖diag(Dk
1/p)Mk‖pp+

ρ

2

K∑
k

(
‖Mk−HkΩ̂kBk+Γk‖2F − ‖Γk‖2F

)
(11)

where ρ is the penalty parameter and Γk is the dual variable
corresponding to the kth constraint. Thus, solving Equation
(11) amounts to alternately optimizing the subproblem of B
and M , as elaborated in turn below.
5.1.1 Update B
The subproblem of B-update is as follows:

minB≥0 L(Ω ·B) +
ρ

2

K∑
k

‖Mk −HkΩ̂kBk + Γk‖2F (12)

Equation (12) can be solved by the backtracking Armijo line
search [2] method:

B ← prox≥0(B − η(∇+ ∇̂)) (13)
where {∇, ∇̂} ∈ R2m×1 such that ∇ = ∂L(Ω·B)

∂B and ∇̂ =

{∇̂βk}Kk where ∇̂βk = (HkΩ̂k)
T
HkΩ̂kBk−HkΩ̂k(Mk+Γk)

5.1.2 Update M
The subproblem of M -update is as follows:
Mk ← min

Mk≥0
λ‖diag(D

1/p
k )Mk‖pp+

ρ

2
‖Mk−HkΩ̂kBk+Γk‖2F (14)

where k = 1, . . . ,K , which are all separable and each
subproblem of Mk,i is:
min

Mk,i≥0
hk(Mk,i) = λDk,iM

p
k,i +

ρ

2
(Mk,i−Hk,iΩ̂kBk+Γk,i)

2 (15)

which has analytical solutions when p is equal to special
values, namely when p = 1/2 or p = 2/3:

1. When p = 1/2. By denoting M1/2
k,j = x, the derivative

of Equation (15) can be transformed to the following:

x3 − (Hk,iΩ̂kBk − Γk,i)x+
λ

2ρ
Dk,i = 0 (16)

where x∗ = {x1, x2, x3} ⊂ C is the set of analytical solu-
tions to the cubic equation using Cardano’s formula [35]. C
denotes the complex value domain. Therefore, the analytical
solution to Mk,i is:
M∗k,i = max(max(x∗r), 0)2,where x∗r={s|s ∈ R, s ∈ x∗} (17)

2. When p = 2/3. By denoting M1/3
k,i = x, the derivative

of Equation (15) can be transformed to the following:
x4 − ρ(Hk,iΩ̂kBk + Γk,i)x+ λ/(2ρ)Dk,i = 0 (18)

Therefore, we have:

M∗k,i =

{
max(max(x∗r), 0)3, when x∗r 6= ∅

0 , when x∗r = ∅
(19)

where x∗r = {s|s ∈ R, s ∈ x∗} is the set of real-number
solutions.

5.2 Algorithm Implementation and Complexity Analysis

The algorithm is initialized as the case for p = 1, which is
a convex problem and can provide a good initial guess. We
implement the proposed ACAFH model in Matlab 4.

Algorithm 2 takes {Hk}Kk=1 as the input instead of
the entire H . So the space complexity of the Algorithm
2 is only O(

∑K
k mkdk) ≈ O(Kmd), which is less than

O(dm) ≈ O(K2md) in CAFH model, where m and d

4. The codes are available at https://github.com/qingzheli/ACAFH

are respectively the average number of vertices and hyper-
edges in each connected component. As the ADMM-based
algorithm typically can provide the results that are good
enough for prediction in several dozens of iterations, the
outer loop in Lines 6-27 as a constant number of iterations.
The number of iterations of updating B Lines 7-15 can
typically be a few thousands, which depends on the choice
of η for both ACAFH and CAFH optimization algorithms.
For each iteration of updating B, the time complexity is
O(

∑K
k dk · m3

k) that is dominated by the time complexity
of computing the gradients in Line 12, which also absorbs
the time complexity of updating M . In contrast, in CAFH
optimization algorithm, the time complexity of computing
the gradients is O(d ·m3) ≈ O(K4dm3) that is much larger
than O(

∑K
k dk · m3

k) ≈ O(Kdm3) in ACAFH when the
hypergraph is highly sparse (i.e., K is large).

6 EXPERIMENTS

In this section, we first experimental setup is introduced,
then we evaluate the effectiveness of the proposed ACAFH
model. Then, the efficiency of optimizing the proposed mod-
els is explored on various settings.

6.1 Experimental Settings
In this section, the datasets, evaluation metrics, and the
comparison methods are introduced in turn. All the
experiments were implemented Matlab, and conducted on a
64-bit machine with 16.0 GB memory.

6.1.1 Datasets
• Synthetic datasets
In effectiveness experiments, eight synthetic datasets, each
has 1000 samples, were generated with different settings.
The generation procedures are as follows. We generate the
predictors of the design matrix X ∈ R20000×100 using a
Gaussian distribution with a zero mean and a standard
deviation of “1”. The sparse vector W ∈ R1×100 is generated
by a pairwise multiplication between a binary vector and
a real-valued vector, namely Wi = ai · bi. Here each ai is
sampled from a Gaussian distribution with a mean of zero
and a variance of one while bi is sampled from a Bernoulli
distribution with a probability of success of 0.5. Then
the dependent variable Y ∈ {−1, 1}20000×1 is generated
through the mapping Y = sign(X · WT + ε), where ε
is sampled from a Gaussian distribution with a mean of
zero and standard a deviation of one. The basic feature
cost D ∈ R200×1 is generated from a Gaussian distribution
with zero mean and a standard deviation of one. The
incidence matrix H = [H1;H2] ∈ {0, 1}200×100 consists of
two incidence matrices H1 ∈ {0, 1}100×100 for nodes and
Type-1 edges and H2 ∈ {0, 1}100×100 for nodes and Type-2
edges. To ensure that none of the columns or rows of H1 is
an all-zero vector, H1 = Φ ◦ Ψ is generated from a pairwise
“OR” operation of two binary matrices Φ and Ψ with the
same size as H , where ◦ denotes a pairwise “OR” operation,
so H1,i,j = Φi,j

∨
Ψi,j , Φ is an identity matrix while the

elements in Ψ are randomly sampled from a Bernoulli
distribution with successful probability ranging from “0.1”
to “0.8”. This method was used to generate eight synthetic
datasets with different sparsities of the H matrix, reflecting
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different degrees of feature computational dependency.
For all the methods, the first 5000 samples are used as the
training set, the next 5000 as the validation set and the
remaining 10000 as the test set.In efficiency experiments, the
related synthetic datasets are generated with various feature
counts and sparsity levels accordingly while the generation
process is the same as described here.

• Real-world datasets
Six real-world datasets for intruder detection were utilized
for performance evaluation. Specifically, the network traffic-
flow data of the communication signals of intruder devices
in a WLAN environment were collected; 3 types of intruder
devices and 2 types of network traffic mode were used
for this detection. The datasets are: 1) Parrot Bebop with
bidirectional traffic flow (35,143 samples); 2) DBPower UDI
with bidirectional flow (31,374 samples); 3) DJI Spark with
bidirectional flow (10,000 samples); 4) Parrot Bebop with
unidirectional flow (21,225 samples); 5) DBPower UDI with
unidirectional flow (27,024 samples); and 6) DJI Spark with
unidirectional flow (132 samples). For all the datasets, the
packet sizes and packet inter-arrival time are the raw data
sources. For each source, the first 9 features in Table 1
are extracted. For those based on bidirectional flow, the
uplink, downlink, and total traffic are considered while for
those based on unidirectional flow, only the total traffic is
considered. Therefore, the first three datasets have 9 features
× 2 sources × 3 direction flow = 54 features and there are
9 features × 2 sources = 18 features for the remaining 3
datasets. Each sample has a label of either positive (existence
of intruder) or negative (no intruder). For each dataset,
both the feature generation and feature utilization runtime
is measured. For the feature generation time, each feature
generation runtime is computed based on the average time
required to run 1000 data samples. A feature computational
dependency hypergraph such as the one in Fig. 1 was created
and the generation time measured for each basic feature
computation component (i.e., the weight of each hyperedge
of Type 1) based on the average computation time for 1000
data samples. For example, for the feature “standard devi-
ation”, its feature generation runtime consists of the feature
component “mean” and the remaining computation utilizing
the computed “mean”. The feature utilization runtime is
measured as follows: we first calculate the model runtime
Ta without any features (i.e., only the bias term), and then
compute the model runtime Tb with all features selected.
Then the feature utilization runtime (i.e., the hyperedges of
Type 2) is generated as Tb − Ta divided by the number of all
the features.
•Metrics
For effectiveness experiments, the F1 score, namely F1 =
2 · precision · recall/(precision + recall), is utilized as the
major metric. The other metrics include: 1) prediction run-
time, which represents the total amount of time spent on
prediction including both feature generation and the model
prediction using the generated features. 2) the number of
selected features, which is the summation of the count of
the non-zero entries in feature weights W . 3). the number
of selected feature computational components, which is the
summation of the count of the non-zero entries in H · W .
The 5-fold cross-validation is performed, and the average F1

scores and prediction time are recorded.
For efficiency experiments, the CPU time of training the
models and the peak memory usages are utilized for effi-
ciency evaluation.
• Competing Methods
We compare the proposed model with 5 prediction time-
sensitive classifiers and 2 generic classifiers: `1-regularized
logistic regression [27], [36], re-weighted-`1-regularized lo-
gistic regression [35], Cost-Sensitive Tree of Classifiers
(CSTC) [33], Greedy Miser [28], Directed Acyclic Graph for
cost-constrained prediction (DAG) [37], Neural Network,
and Random Forests [38]. These methods are described in
turn below.
`1-regularized logistic regression (L1). This is a classic
way to conduct cost-efficient classifications by enforcing the
sparsity of the selected features. It includes a parameter λ to
regularize the feature weights (e.g., λ‖W‖1). The larger the
value of λ is, the fewer the selected features will be.
Reweighted-`1-regularized logistic regression (reweighted
L1). This is a generalized version of L1. Here the respective
cost of each feature can be considered so that features with a
higher time cost will be assigned a larger penalty. Similar to
L1, there is a trade-off parameter λ on its regularization term
(e.g., λ‖HTD ◦W‖1) to balance the empirical loss and time
cost, where HTD provides the time costs for each feature
and “◦” denotes the Hadamard product to reweight the
features’ weights in the regularization term.
Cost-Sensitive Tree of Classifiers (CSTC). Similar to the
re-weighted L1, this method also directly trades off the
empirical loss and the runtime cost. However, this method
considers the feature generation time and the feature utiliza-
tion runtime separately. The trade-off parameter is tunable,
as in the above two methods.
Greedy Miser. This method again trades off accuracy and
feature cost in terms of the feature generation cost and the
runtime of the algorithm. To approximate an optimal trade-
off, an update rule based on greedy optimization is utilized
with stage-wise regression.
Directed Acyclic Graph for cost-constrained prediction
(DAG). This method considers the situation when several
features can be budgeted together with a fixed total cost,
by utilizing directed acyclic graph to search for the best
combination of features.
Neural Network and Random Forest. These two methods
do not consider the prediction time at all. But they are
considered as one of the state-of-the-art general-purpose
classifiers. The fully connected shallow neural network with
three layers implemented in Matlab deep learning toolbox
and the standard random forest with sixty bags implemented
in Matlab statistics and machine learning toolbox are em-
ployed in our experiments.
Cost-Aware classification using FCD Heterogeneous hy-
pergraph (CAFH) Our previously proposed methods [19].
Depending on the nonconvex regularization term utilized,
we have CAFH (p=1/2) and CAFH (p=2/3) where the `1/2
and `2/3 quasi-norms are utilized, respectively.

6.2 Effectiveness Evaluation

In this section, we first evaluate the effectiveness of ours
and all comparison methods, then we analyze the impact
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of feature computational dependency on prediction runtime
and prediction F1 scores.

6.2.1 Performance on the Effectiveness

The performance of the proposed and comparison methods
are illustrated and discussed on synthetic datasets and real-
world datasets in turn.
• Performance on Synthetic Datasets
Fig. 2 shows the F1-runtime performance histograms for
all the methods on the 8 synthetic datasets with increasing
prediction runtime budget levels. The bars represent the
highest F1 scores within the corresponding runtime budget.
Some methods’ bars are missing from lower levels of runtime
(e.g., runtime less than 200 microseconds). Because none of
the runtimes satisfies the given time budget after the trade-
off parameters were intensively tuned. For neural network
and random forests that do not consider the prediction time,
all features are selected, so their bars are only shown in the
highest level of runtime budget (i.e., runtime is greater than
300 microseconds). It is obvious that less prediction runtime
budget with higher F1 scores are desired. Our currently pro-
posed ACAFH models and our previously proposed CAFH
models [19] consistently outperforms the other methods on
most budget levels. As seen in Fig. 2, on < 200 microseconds
level, none of the methods perform well because the F1 score
is 0.67 when simply predicting all samples as positive. On
< 250 microseconds level, our outperform other comparison
methods on six out of eight datasets. On< 300 microseconds
level, our methods achieve F1 scores over 0.9 on all eight
datasets while the best comparison method DAG on this
runtime level only achieves about F1 scores of 0.85. On
runtime > 300 microseconds level, the neural network,
the L1 and reweighted L1 methods all achieve competitive
F1 scores with our methods, but our methods can achieve
the similar results within a lower runtime budget. The F1
scores of the CAFH (p=1/2) method are similar to ACAFH
(p=1/2) method since these two models are theoretically
equivalent to each other. Although the performance of the
proposed ACAFH model is very close to the previously
proposed CAFH model, as we will show in Section 6.3,
their training time and memory cost are very different when
the features are from different data sources. The F1 scores
of the CAFH/ACAFH (p=2/3) methods perform slightly
worse than the CAFH/ACAFH (p=1/2) methods be-cause
`1/2 quasi-norm can provides a better approximation of I(·)
than `2/3 quasi-norm.
• Performance on Real-world Datasets
Fig. 3 demonstrates the effectiveness of our proposed
ACAFH methods compared with the other methods on all
six real-world datasets. Our methods achieve an average F1
score of over 0.99 within 1 microsecond prediction runtime
on all six real-world datasets. On runtime budget < 1
microsecond level, the reweighted L1 method generally per-
forms well than other comparison methods, but still worse
than our methods in Fig. 3 (b) directed DBPOWER, (c)
directed DJI Spark, and (e) undirected DBPOWER datasets.
The random forest method achieves the highest F1 scores on
all six datasets. However, its prediction runtimes are much
longer than other methods since the random forest method
typically needs lots of features in different trees. DAG tends
to achieve high F1 scores within 2 microseconds on the last
three datasets, which only contain 18 features. For the first

three datasets with 54 features, the DAG method fails to
select the optimal set of features to reduce the prediction
runtime.
6.2.2 Analysis of Feature Computational Dependencies
This section analyzes the effectiveness of the selected fea-
tures in reducing runtime and retaining F1 score. The pre-
diction runtime versus the number of selected features and
the F1 score versus the number of selected features are em-
pirically analyzed on both synthetic and real-world datasets.

For synthetic datasets, only two synthetic datasets are
plotted to show the trends due to space limitations. As
shown in the first row of Fig. 4, the dashed lines correspond-
ing to the L1 and reweighted L1 methods are mostly above
the dotted lines corresponding to our methods, which clearly
illustrates the proposed methods use less prediction runtime,
when selecting the same number of features, by selecting the
optimal set of feature computational components through
FCD. On the other hand, as shown in the second row of
Fig. 4, our methods plotted in dotted lines can still achieve
competitive F1 scores of the L1 and reweighted L1 methods.
Because our methods consider both prediction runtime and
prediction error, in contrast, the L1 and reweighted L1 meth-
ods only consider minimizing the prediction error.

For real-world datasets, the results shown in Fig. 5 are
consistent with Fig. 4 for the same reason. Moreover, as
shown in the 2nd-row of Fig. 5, which plots the curves
between the number of Feature Computational Components
(FCCs) versus the number of the selected features, our meth-
ods tend to select more features with less number of FCCs
than the comparison methods. The curves of our methods
in the 1st-row figures are highly correlated to the curves in
the 2nd-row figures, which can empirically explain why our
methods need less prediction runtime than the comparison
methods.

6.3 Efficiency Evaluation
This section evaluates the efficiency of the proposed ACAFH
model in the training phase. Unlike the identical perfor-
mance on the effectiveness, the CAFH and ACAFH perform
quite differently on their efficiency in term of the train-
ing/optimization time. When the total feature count is high
(i.e., m is large), or when the feature dependencies are rare
(i.e., H is sparse), the training time and the memory usage of
the ACAFH model are much less than CAFH.
6.3.1 Training Time vs. Number of total features
• Training time on synthetic datasets: In this experiment,
The synthetic datasets used in this section are generated in
the way as described in Section 6.1.1. Six synthetic datasets
were generated which contain 10000 training samples each,
m ∈ {1000, 2000, · · · , 6000} features and Ψ = 0.0001, which
controls the sparsity level of the incidence matrix H , is
fixed. Fig. 6 (a) and Fig. 6 (b) compare the training time
of CAFH and ACAFH for p = 1/2 and p = 2/3 cases,
when the number of features m are varying from 1000 to
6000. As shown, the training time increases with the growing
of the total feature count for both p = 1/2 and p = 2/3
cases. However, ACAFH increases much slower than CAFH.
This is because the computational cost of ACAFH grows
slowly after decomposing the sparse hypergraph to several
connected components as discussed in Section 5.1.
• Training time on real-world datasets: In this experiment,
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Fig. 2: The best F1 score achieved within a given prediction runtime budget on all the synthetic datasets. The proposed
ACAFH models and CAFH models outperform other comparison methods on lower budget levels.
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Fig. 3: The best F1 score achieved within a given prediction
runtime budget on all the real-world datasets. The proposed
ACAFH and CAFH models achieve over 0.99 average F1
scores within 1 microsecond on all six real-world datasets.

the training time of the proposed ACAFH model and other
comparison methods are evaluated. All methods are im-
plemented in Matlab, except for Greedy Miser, which is
compiled to C++ from Matlab by its author. To illustrate
the training time with various numbers of features, we
create five additional datasets, which contain 1080, 2160,
3240, 4320, and 5400 features, by repeating the original 54
features 20, 40, 60, 80, and 100 times from the real-world
directed Parrot Bebop dataset. Recall the original 54 features
come from 2 sources × 3 direction flow = 6 data sources,
and there are 5 Connected Components in Heterogeneous
Hypergraph (CCHH) for each data source. Therefore, the
original directed Parrot Bebop dataset contains 5 CCHHs ×
6 data sources = 30 CCHHs (i.e., K = 30). Naturally, the
remaining five datasets contain K = 600,K = 1200,K =
1800,K = 2400,K = 3000 CCHHs. The training time
versus the number of features of all methods is shown in
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(b) Synthetic Dataset 3
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Fig. 4: The prediction runtime (1st-row) and the F1 score
(2nd-row) vs. number of selected features on synthetic
datasets. When selecting the same number of features, the
proposed methods (plotted in dotted lines) take much less
time than the L1 and reweighted L1 methods (plotted in
dashed lines), meanwhile, the proposed methods can still
achieve competitive F1 scores as the comparison methods.

Fig. 7. All methods can be trained on all the datasets in less
than 1500 seconds except the DAG method, whose training
time increases very fast with the growth of the number of
features. As seen in Fig. 7, the training time of the proposed
ACAFH model (plotted solid lines) increases much slower
than our previous CAFH model (plotted in dashed lines) as
the time complexity versus analyzed in Section 5.2. For other
comparison methods, the L1 and reweighted L1 methods
grow linearly, but their growth rates are very high such that
these two methods cost more training time than the pro-
posed methods. The shallow neural network, random forest,
greedy miser, and CSTC methods all take slightly less time
than the proposed methods. However, their performances on
effectiveness are much worse than the proposed methods, as
shown in the previous section.
6.3.2 Peak memory usage
• Memory usage on synthetic datasets: In this experiment,
two groups of datasets were generated with 5 synthetic
datasets in each group. The sparsity level Ψ was 10−4 in the
first group, while the sparsity level Ψ was 10−5 in the second
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(b) directed DBPOWER
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(c) directed DJI Spark
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(d) undirected Parrot Bebop
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(e) undirected DBPOWER
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(f) undirected DJI Spark
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Fig. 5: The prediction runtime (1st-row), the number of selected FCCs (2nd-row), and the F1 score (3rd-row) vs. number of
selected features on all real-world datasets. When selecting the same number of features, the proposed methods (plotted in
dotted lines) take much less time than the L1 and reweighted L1 methods (plotted in dashed lines in the 1st-row figures) by
selecting less number of FCCs (as shown in the 2nd-row figures), meanwhile, the proposed methods can achieve even better
F1 scores than the comparison methods.
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Fig. 6: Training time on synthetic datasets with various
feature counts
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group. For each group, we recorded the peak memory usages
during the training phase with various feature counts rang-
ing from 2000 to 10000. As seen in Fig. 8, the optimization
of ACAFH takes much less memory than CAFH when the
incidence matrix H is sparse (e.g. Ψ ≤ 10−5). In addition,
when Ψ = 10−4 the peak memory usage of ACAFH model
grows faster than the peak memory usage when Ψ = 10−5.
This is interesting because the space complexity is related
to the size of the largest CCHH and the size of the largest
CCHH can still be very large when H is not sparse enough.
When the H is sparse enough, the size of the largest CCHH
may grow very slowly with the growth of the feature counts,
so in this case, memory usage of ACAFH is quite insensitive
to the feature count. In contrast, the memory usage of CAFH
grows much faster than the ACAFH model as analyzed in
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Fig. 8: The peak memory usages of CAFH and ACAFH with
various feature counts on two sparsity levels
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Fig. 9: The peak memory usages on real-world dataset

Section 5.2. When H is dense, the size of the largest CCHH
can be close to the original Hypergraph, in this case, the
memory usage of the ACAFH model is similar to the CAFH
model.
•Memory usage on real-world datasets: In this experiment,
the same real-world datasets described in previous training
time experiments are used. The size of raw data also in-
creases with the growing number of features, which uses
the same memory for all methods. To properly show the
memory usage by different algorithms, we just plotted the
memory usage by the algorithm in Fig. 9 by excluding the
memory used by the raw data. Because other comparison
methods except for our previously proposed CAFH model
do not consider the hypergraph to model the feature compu-
tational dependencies, which uses the most memories, we
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Fig. 10: Training time with various sparsity levels

only compare the memory usage with the CAFH models
in this experiment. As seen in Fig. 9, with the growth of
the number of features, the optimization algorithm of the
CAFH model plotted in dashed lines grows quadratically, in
contrast, the proposed optimization algorithm of the ACAFH
model plotted in solid lines grows linearly with a very small
growth rate.
6.3.3 Training Time vs. Sparsity Level
In this experiment, five synthetic datasets with 5000 features
with 10000 training samples were generated by varying the
value of Ψ from 10−1 to 10−5. Fig. 10 (a) and Fig. 10 (b),
which respectively correspond to the p = 1/2 and p = 2/3
cases, compare the training time and the counts of connected
components K versus various sparsity levels. As shown,
when the incidence matrix H is non-sparse (i.e. Ψ ≥ 10−3),
the number of connected components K remains closely
to 1. Therefore, CAFH and ACAFH take similar time on
training. However, when the sparsity level H increases (i.e.
Ψ < 10−3), the number of connected components K quickly
grows. Meanwhile, the training time of ACAFH is much less
than CAFH, which validated our analysis in Section 5.2.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed an Accelerate Cost-aware classi-
fication for large-scale and sparse feature computational de-
pendencies heterogeneous hypergraph model to effectively
reduce the prediction-time cost and retain the model accu-
racy. Specifically, we first model the feature computational
dependency (FCD) as FCD heterogeneous hypergraph and
propose a concise objective function with a faithful represen-
tation of the runtime costs. To optimize this objective func-
tion efficiently with the growth feature counts coming from
multiple data sources, we decompose the original FCD into
a set of Connected Components in Heterogeneous Hyper-
graphs (CCHHs). By using the CCHHs in stead of previous
FCD hypergrah, we developed an Accelerated Cost-Aware
classification for large-scale and sparse FCD Heterogeneous
hypergraph (ACAFH) model, which is equivalent to the
CAFH mode but could be trained much faster. Extensive
experiments on several synthetic and real-world datasets
demonstrated the advantageous performance of the pro-
posed models over the existing methods for cost-sensitive
classification. Detailed analysis on the selected features and
FCCs were also presented to show the competing perfor-
mance on the effectiveness of the proposed method. Finally,
the time and memory costs of training the proposed ACAFH
model were tested on several large-scale synthetic and real-
world datasets, which demonstrated the improvements of

the proposed ACAFH model comparing to previously pro-
posed CAFH model.

For future work, the space and time complexity of the
proposed ACAFH optimization algorithm actually depends
on the size of the largest CCHH. As shown in Fig. 8 (a)
and Fig. 10, when the sparsity level is low, the size of the
largest CCHH could be still very large such that the mem-
ory and time costs will be high during the training phase.
One possible direction could be breaking large CCHHs into
smaller CCHHs by ignoring some FCDs from original FCDs.
However, such decomposition is lossy, which will cause the
suboptimal solution of the ACAFH model. Another promis-
ing direction could be applying the proposed framework
with deep models. Currently, the proposed ACAFH models
apply the framework to the logistic regression model. In
the future, we believe it will be interesting to explore the
application on deep neural networks to reduce the number
of features as well as the size of the neural network model.
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