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Abstract—A controlled experiment is an empirical interven-
tional study method to evaluate the causal impact of an inter-
vention, by identifying the dynamic feature dependency patterns
in the contrast multivariate time series (CMTS) collected from
the control and experimental groups. Manually labeling or
interpreting the effects caused by the intervention from the
CMTS data has become an infeasible task even for domain
experts. Thus, it is imperative to develop an integrated technique,
preferably in an unsupervised manner, that can simultaneously
identify and characterize feature dynamic dependencies and
their contrast patterns in CMTS, which we call the contrast
dynamic feature dependency (CDFD) patterns. In this paper, we
propose a generative model with partial correlation-based feature
dependency regularization to help analysts understand the CMTS
data by jointly 1) characterizing a set of comparable multivariate
Gaussian distributions from CMTS, and 2) determining whether
the intervention causes the changes between two comparable dis-
tributions. Extensive experiments demonstrate the effectiveness
and scalability of the proposed method. The proposed method
applied to a driving behavior application demonstrates its utility
and interpretability.

I. INTRODUCTION

Controlled experiments typically contrast two multivariate
time series, which are respectively from a control group and
an experimental group, to identify the causal impact of an
intervention. We call the control multivariate time series and
the experimental multivariate time series together as a contrast
multivariate time series (CMTS). In this paper, we focus on
quantitatively analyzing the effects of an intervention on drivers’
driving behaviors. Driving behavior can be sensed by in-vehicle
sensors such as brake or steering wheel positions, and jointly
characterized by them via their dependency network. For
example, the “steering wheel” will have lower values and
the “brake” will have higher values under the driving state of
deceleration. Such dependencies among the features of different
sensors can form a dependency network to characterize the
corresponding driving states. Therefore, the research goal of
this paper is to identify whether and how much the intervention
makes a difference in causing some “contrast driving behavior”
under the same driving state, which raises another non-trivial
problem of dynamically extracting the latent states from CMTS.
The above problems amount to jointly extract and characterize
various latent states, and contrast the behaviors under the
intervention as exemplified in Fig. 1.

Although there exists some work for partially handling
above tasks in dependency network inference [1], time series
subsequence clustering [2], and contrast pattern mining [3], no

Fig. 1: A controlled driving behavior experiment: The control
series without the intervention and the experimental series with the
intervention are plotted at the top and bottom portions are covered
in red, green and blue colors that denote the latent driving states
of deceleration, turning and acceleration, respectively. Under the
same latent state, the darker-colored parts denote that the dependency
networks are affected by the intervention. For example, both affected
and unaffected dependency networks under the “turning” latent state
are plotted in the middle portion. The nodes denotes the same-colored
sensor in multivariate time series. There are w layers in each network
to capture the dependencies across small time intervals.

work has been proposed to address the contrast pattern mining
problem for controlled experiment. Several challenges prevent
existing work from being directly utilized or trivially combined
to address contrast pattern mining problem: 1. Difficulty in
integrally modeling the contrast pattern mining problem
for controlled experiments. This problem requires not only
identifying the latent states but also detecting the location
of contrast patterns, as well as characterizing the contrast
patterns. These subproblems tightly couple with each other,
and thus should be jointly modeled. Simply using the existing
models to solve the subproblems separately will fail to obtain
a joint optimal solution. 2. Difficulty in differentiating the
patterns featured by the latent states and those caused by
the intervention. The dependency patterns between two latent
states are different from those affected by the intervention. We
notice that the dependency patterns may significantly change
when switching to another latent states, while the dependency
patterns may slightly change with and without the intervention
under the same latent state.

To the best of our knowledge, none of the existing work
can address all the above challenges and provide an concrete



TABLE I: Notations
Notation Description
X ,X̂ contrast multivariate time series
T , T̂ the lengths (i.e. number of rows) of X ,X̂
Y, Ŷ latent state assignments, where |Y | = T and |Ŷ | = T̂

Z contrast pattern indicator for X̂ , and |Z| = T̂

θk, θ̂k contrast inverse covariance matrices of the k-th latent state
K the count of the latent states
w sliding window size

β, γ, λ regularization parameters

model that formulates the CDFD pattern mining problem for
controlled experiments. Our main contributions are as follows:
• Formulating the dynamic multivariate dependency pat-

tern pattern mining problem for controlled experiments.
We formulate the contrast pattern mining problem to identify
the effects of the intervention in an unsupervised and
interpretable manner, which jointly optimizes the latent state
assignments, contrast pattern detection, and characterization
of the contrast dependency patterns in CMTS.

• Proposing a generative model with partial correlation-
based regularization. We model the CMTS by characteriz-
ing the generative process of the control and experimental
time series. Moreover, we propose a new partial correlation-
based regularization to differentiate the contrast patterns in
CMTS.

• Conducting experiments on both synthetic and real-
world datasets. The experiments demonstrate the effective-
ness of the proposed approach on synthetic datasets. The case
study shows the utility and interpretability in a real-world
controlled experiment.

II. PROBLEM SETUP

We first define the relevant terminologies and then present the
new research problem of contrast dynamic feature dependency
pattern mining in controlled experiments.

A multivariate time series x=[x1, · · · , xm] is a time-ordered
sequence of m vectors where xt ∈ Rn×1 is a multivariate
observation that contains n variables at time t. Instead of
following the independent and identically distributed (i.i.d.)
assumption, the observation of xt is also dependent on its
context. To capture both dependencies among different sensors
and different nearby time indices, we first concatenate the
observations xt and its w− 1 successors extracted by a sliding
window of size w � m, which formulates an nw-dimensional
row vector Xt=[xᵀt , · · · , x

ᵀ
t+w−1] to denote a multivariate time

series subsequence. Then we stack all these subsequences, from
X1 to XT , into a matrix X∈RT×nw where T = m−w+1.
By doing this, the dependencies in original time series x
can be represented by the dependencies among the n · w
features/columns in X . Due to the one-to-one relationship
between x and X for a given w, we still call X a multivariate
time series. The multivariate time series data X usually exhibits
different latent states that may dynamically switch over time.
These latent states are reflected by both the values of different
features and their dependency patterns. For instance, the
multivariate time series that record a driving session, can
involve three latent states: “Acceleration,” “Deceleration,” and
“Turning.” For the “Acceleration” state, its dependency network
should contain a strong dependency between the “Accelerator”

sensor at time t and time t + 1, and should not contain any
strong dependency between other features. The other two
latent states should be characterized by completely different
dependency patterns. We use Y ∈ {0, 1}T×K to denote the
assignments of the latent state for all subsequences. Specifically,
Yt,k = 1 if Xt belongs to the k-th latent state; otherwise,
Yt,k = 0. As X only contains continuous values, each latent
state can be naturally characterized by a multivariate Gaussian
distribution parameterized by an inverse covariance matrix
θk∈Rnw×nw. The inverse covariance matrix θk may encode the
dependency network Gk=(Xt, θk) as a correlation network or
partial correlation network [4] whose nodes denote the features
and whose weighted edges denote the correlation or partial
correlation between the connected features.

In controlled experiments, the two multivariate time series
are generated from the control and the experimental sessions.
They are contrasted to explore the possible differences caused
by the intervention. We call the two multivariate time series
in the controlled experiments contrast multivariate time series
(CMTS). As other factors are strictly controlled to diminish
their effects on the subject, the two multivariate time series
usually share the same set of latent states. Formally, the CMTS
is defined as follows:
Definition 1. [Contrast Multivariate Time Series] The con-
trast multivariate time series (CMTS) contains two multivariate
time series such that 1) the control multivariate time series
X∈RT×nw are generated without the intervention and the
experimental multivariate time series X̂∈RT̂×nw are generated
with the intervention, 2) X and X̂ share the same set of the
latent states.

To identify the effects of the intervention, it is natural to
contrast their patterns under the same latent state. Concretely,
the contrast pattern in controlled experiments is formally
defined as follows:

Definition 2. [Contrast Dynamic Feature Dependency] For
the subsequence X̂t̂ belonging to the k-th latent state, if the
intervention changes the original feature dependencies θk into
a new one θ̂k , there exists the contrast dynamic feature
dependency (CDFD) pattern at time t̂. Hence, we use a contrast
indicator Z∈{0, 1}T̂×1, to signify the existence of CDFD in X̂
caused by the intervention. Specifically, Zt = 0 if there exists
CDFD in X̂t; otherwise, Zt = 1.

A driver may accelerate more quickly after she/he takes
medicine that stimulates adrenaline in some road segments,
which demonstrates the contrast pattern in the controlled exper-
iments. In this paper, our goal is to identify and characterize
the CDFD patterns for CMTS in controlled experiments. The
problem is formally defined as follows:
Problem Formulation: Given the CMTS X and X̂ , our goal
is to simultaneously discover the interpretable CDFD patterns,
including 1) to determine the latent state assignments Y and Ŷ
for X and X̂ , respectively, 2) to characterize the K latent states
by learning their CDFD patterns θ = {θk}Kk and θ̂ = {θ̂k}Kk ,
and 3) to decide the Z assignments by detecting the CDFD.

For example, for the problem of mining the CDFD patterns
in the controlled experiment on driving behavior, in order to
test the effectiveness of taking some medicine, the research
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Fig. 2: The Contrast Pattern Mining Model

goals are : 1) to determine the driving state assignments Y and
Ŷ , 2) to characterize the K latent driving states encoded by θ
and θ̂, and 3) to decide the Z assignments based on whether
driving behaviors have been changed after medication.

III. THE METHODOLOGIES

This section proposes the model of Contrast dynamic feature
dependency Pattern Mining with Partial correlation-based
regularization (CPM-P). We first establish the generative
model for CMTS and then present our partial correlation-based
regularization exclusively designed for the contrast pattern
mining problem. Finally, the temporal regularization on the
latent state assignments are presented.

A. Generative Model of CMTS

The time series subsequences Xt and X̂t̂ in CMTS are
continuous variables in controlled driving behavior experiments,
so they are modeled to be sampled from a set of multivariate
Gaussian distributions. The generative process is depicted in
Figure 2a. Specifically, by Definition 1 for any (t = 1, · · · , T ),
Xt belongs to one of the K latent states, and hence for each
subsequence Xt at time index t, we draw Xt ∼ N (Xt|θk, µk)
in Figure 2a, where θk and µk are respectively the inverse
covariance matrix and the mean vector to be estimated by the
Xt data assigned to the k-th latent state. The joint conditional
distribution of X is: p(X|Y, θ) =

∏K,T

k,t
N (Xt|θk, µk)Yt,k ,

where θ = {θk}Kk . Similarly, for any (t̂ = 1, · · · , T̂ ), X̂t̂ also
belongs to one of the K latent states. However, the vectors X̂t̂

that belong to the k-th latent state are possibly generated either
from a new distribution N (X̂t̂|θ̂k, µ̂k) or from N (X̂t̂|θk, µ̂k).
Here, θ̂k and µ̂k are respectively the inverse covariance matrix
and the mean vector to be estimated by the X̂t̂ data assigned
to the k-th latent state. Specifically, when Zt̂ = 0 (i.e., the
CDFD pattern exists), we draw X̂t̂ ∼ N (X̂t|θ̂k, µ̂k) in Figure
2a. Otherwise, when Zt̂ = 1 (i.e., the CDFD pattern does not
exist), we draw X̂t̂ ∼ N (X̂t̂|θk, µ̂k) in Figure 2a. Therefore
the conditional joint distribution of X̂t̂ is: p(X̂|Ŷ,Z, θ, θ̂) =∏K,T̂

k,t̂
[N (X̂t̂|θk, µ̂k)Ŷt,k ]Zt̂ [N (X̂t̂|θ̂k, µ̂k)Ŷt,k ](1−Zt̂). Based on the

equations above, the joint likelihood of (X, X̂) conditioned
on the parameters Y, Ŷ , Z, θ, and θ̂ is:p(X, X̂|Y, Z, θ, θ̂) =
p(X|Y, θ) · p(X̂|Ŷ , θ, θ̂). Therefore, given the CMTS (X, X̂)
data, maximizing the likelihood is equivalent to minimizing
the negative log likelihood, which leads to our loss function:

L(Y, Ŷ , Z, θ, θ̂) = −
∑T,K

t,k
Yt,k``(Xt, θk)

−
∑T̂ ,K

t̂,k
Ŷt,k[Zt̂``(X̂t̂, θk) + (1− Zt̂)``(X̂t̂, θ̂k)], (1)

where ``(a,Γ)=− 1
2 (aᵀ−µ)ᵀΓ(aᵀ−µ)+1

2 log det Γ−n2 log(2π))
denotes the log likelihood that vector a comes from the
Gaussian distribution with the inverse covariance matrix Γ.

B. Partial Correlation-based Regularization
As discussed in the previous section, it is only meaningful

to contrast two feature dependency patterns for the same
latent state. However, for existing models, it is very difficult
to characterize the complicated relationships among feature
dependency networks belonging to different latent states with
or without the contrast patterns. For example, consider the four
feature dependency patterns encoded by θi, θ̂i, θj, θ̂j , as shown
in Figure 2b. θi and θ̂i should be similar (i.e., the grey arrows)
such that both of them characterize the i-th latent state, but on
the other hand, they should also be different (i.e., the orange
arrows) to characterize the effect caused by the intervention.
In addition, θi and θj (or θ̂i and θ̂i) should characterize the
differences between the i-th and j-th latent states in a different
way (i.e., the red arrows). To ensure θk and θ̂k are characterizing
the same latent state, the difference between θk and θ̂k should be
regularized under appropriate metrics. Traditionally, the inverse
covariance matrices are mostly regularized by penalizing the
element-wise differences with an L1-norm or L2-norm (e.g.,
[1]). However, these regularizations are flawed because a
single element in the inverse covariance matrix does not
have any mathematical or statistical meaning. Moreover, the
scales and values of the non-diagonal elements depend on the
diagonal elements. Both flaws prohibit directly regularizing
the inverse covariance matrices. To address the above flaws,
we propose to regularizing the element-wise distance between
the partial correlation coefficient matrices. Doing so has the
following advantages: 1) The partial correlation captures the
feature dependency better than other correlations. 2) The partial
correlation coefficients share the same scale and range. So it
is more reasonable to apply element-wise distance on partial
correlation matrices ρk and ρ̂k rather than inverse covariance
matrices θk and θ̂k. Therefore, we propose a new partial
correlation based regularization as follows:

RC(θ, θ̂) = λ ·
∑K

k
‖ρk − ρ̂k‖2F ,

where the elements of the partial correlation matrices are
ρk,i,j =−θk,i,j/(θk,i,iθk,j,j)

1
2 and ρ̂k,i,j =−θ̂k,i,j/(θ̂k,i,iθ̂k,j,j)

1
2 .

C. Temporal Regularization
Due to the nature of temporal continuity in time series, neigh-

boring points tend to have consistent latent state assignments
and contrast indicator values. We thus penalize the divergence
of the assignments between the neighboring time indices by
proposing the following smoothing term:
RT (Y,Ŷ,Z)=

∑T

t=2
γ1(Yt6=Yt−1)+

∑T̂

t̂=2
β1(Zt̂ 6= Ẑt−1)+γ1(Ŷt̂ 6= Ŷ̂t−1)

where 1(·) is an indicator function that maps “True” values to
1 and “False” values to 0, β is the penalty if Zt 6= Zt−1, and
γ is the penalty of switching among the K latent states.

D. The Overall Objective Function:

Based on above components, the overall objective function
of the proposed CPM-P model is as follows:
argminθ,θ̂,Y,Ŷ ,Z L(Y, Ŷ , Z, θ, θ̂)+RC(θ, θ̂)+RT (Y, Ŷ , Z), (2)

where {θk, θ̂k} � 0 are positive definite matrices such that
logdet(·) is defined in a valid domain. The hyper-parametersK
andw, can be chosen based on prior knowledge, through cross-
validation, or by a principled method such as the Bayesian
information criterion [5]. If the number of subsequences
assigned to any latent state is too small (e.g. <30) to learn a
good θk and θ̂k, this indicates that the value ofK should be
decreased. Since the short term temporal dependency is much



Algorithm 1 Overall Algorithm for optimizing CPM-P model
Require: X, X̂,K,w, n, λ, β, γ
Ensure: solution Y, Ŷ , Z, θ, θ̂
1: {Y, Ŷ } ← random initialization
2: Z ← 0
3: repeat
4: for k = 1, · · · , K do
5: Φk ← {Xt|Yt,k = 1}

⋃
{X̂t̂|Ŷt̂,k = 1 AND Zt̂ = 1}

6: Ψk ← {X̂t̂|Ŷt̂,k = 1 AND Zt̂ = 0}
7: [θk, θ̂k]← ADMM solver(λ,Ψk,Φk)
8: end for
9: Y ← Updating Y by fixing θ

10: (Ŷ , Z)← Updating Ŷ and Z by fixing θ and θ̂
11: until Y, Ŷ and Z assignments are stationary
12: return Y, Ŷ , Z, θ, θ̂

stronger than the long term one in real-world applications, the
window size w should be small (e.g. w<10).

E. Model Optimization

In this section, we briefly introduce our parameter optimiza-
tion algorithm for the proposed CPM-P model. The details and
implementation of the algorithm are provided in [6].

The overall objective function defined in Equation (2) is a
mixture of combinational optimization of discrete variables
(i.e., Y, Ŷ , Z) and continuous variables (i.e., θ, θ̂) with the non-
convex term (i.e. the partial correlation-based regularization
term). Jointly optimizing these variables is prohibitively difficult
to be solved by the existing algorithms. To address this
challenge and optimize the proposed model, we develop an
Expectation Maximization (EM)-like optimization algorithm
outlined in Algorithm 1. After a random initialization of
the discrete variables’ assignments, Lines 3-12 alternatively
optimize the continuous variables and discrete variables until
the discrete assignments are stationary. Specifically, the max-
imization step (M-step) optimizes θ and θ̂ in Lines 4-8, and
then the expectation step (E-step) optimizes the Y, Ŷ and Z
assignments in Lines 9-10.

IV. EXPERIMENTS

The performance of the proposed CPM-P method is evaluated
on synthetic and real-world datasets with different settings.

A. Evaluation on Synthetic Datasets

Because of the unsupervised nature and the lack of publicly
available real-world datasets with labels for the contrast pattern
mining problem, we first evaluate the effectiveness of the
proposed CPM-P model on 3 synthetic datasets generated with
random latent state assignments.
Generating the Synthetic Datasets: Due to the space limita-
tion, the synthetic datasets generation process are provided in
our supplemental materials [6].
Evaluation metrics: To compare the effectiveness of the
proposed method and other methods, the predicted latent state
and CDFD pattern assignments are evaluated with the ground
truth labels described above. To ensure a fair comparison of
effectiveness among all methods, the number of latent states
K in all the methods is fixed to the corresponding K used to
generate the datasets. All methods are evaluated as a clustering
problem with K clusters for the latent state assignments by
using macro F1 score defined as the mean F1 scores of all
clusters. The predicted CDFD pattern assignments are evaluated

TABLE II: The (macro) F1 scores of predicted Y, Ŷ , and Z assignments
Method Dataset 1 Dataset 2 Dataset 3

Y Ŷ Z Y Ŷ Z Y Ŷ Z

K-means+1SVM 0.50 0.51 0.58 0.33 0.34 0.61 0.28 0.27 0.60
K-means+EE 0.50 0.51 0.23 0.33 0.34 0.25 0.28 0.27 0.25
K-means+IF 0.50 0.51 0.23 0.33 0.34 0.26 0.28 0.27 0.26
K-means+LOF 0.50 0.51 0.15 0.33 0.34 0.18 0.28 0.27 0.21
K-shape+1SVM 0.51 0.51 0.54 0.34 0.33 0.56 0.26 0.24 0.55
K-shape+EE 0.51 0.51 0.23 0.34 0.33 0.25 0.26 0.24 0.25
K-shape+IF 0.51 0.51 0.24 0.34 0.33 0.26 0.26 0.24 0.25
K-shape+LOF 0.51 0.51 0.14 0.34 0.33 0.19 0.26 0.24 0.21
TICC+1SVM 0.99 0.72 0.47 0.29 0.24 0.48 0.25 0.23 0.51
TICC+EE 0.99 0.72 0.35 0.29 0.24 0.25 0.25 0.23 0.25
TICC+IF 0.99 0.72 0.29 0.29 0.24 0.27 0.25 0.23 0.25
TICC+LOF 0.99 0.72 0.30 0.29 0.24 0.20 0.25 0.23 0.25
GMM+1SVM 0.95 0.87 0.49 0.85 0.80 0.50 0.83 0.78 0.52
GMM+EE 0.95 0.87 0.22 0.85 0.80 0.22 0.83 0.78 0.24
GMM+IF 0.95 0.87 0.23 0.85 0.80 0.24 0.83 0.78 0.25
GMM+LOF 0.95 0.87 0.16 0.85 0.80 0.18 0.83 0.78 0.21
Baseline (λ=0) 0.94 0.92 0.89 0.86 0.63 0.88 0.83 0.59 0.76
CPM-P (ours) 0.99 0.99 0.98 0.99 0.75 0.89 0.99 0.99 0.98

as an anomaly detection problem by using F1 score defined
as the harmonic mean of the precision and recall. The closer
the (macro) F1 score to 1, the better the result.
Comparison methods and our methods: To the best of
our knowledge, there is no integrated method capable of
mining CDFD pattern for CMTS generated from controlled
experiments. Therefore, all the comparison methods need to
predict the latent state and the CDFD pattern assignments in
two steps. In Step 1, the subproblem of determining latent
state assignments are equivalent to the time series subsequence
clustering problem. We compared with two traditional distance-
based clustering methods, including the classic K-means and
the state-of-the-art K-shape [7] methods, and two model-
based methods, including the classic Gaussian Mixture Models
(GMM) [8] and the state-of-the-art TICC [2] methods. For Step
2, the contrast patterns detection problem can be evaluated
as an anomaly detection problem. The control time series,
which only contain the “normal” data, are used to train the
anomaly detection model, and the experimental time series,
which contain both “normal” and “abnormal” data, are used
to detect the anomalies. Therefore, we consider four anomaly
detection methods for the contrast pattern detection problem:
one-class support vector machine (1SVM) [9] (with linear
kernel), Elliptic Envelope (EE) [10], Isolation Forest (IF) [11],
and Local Outlier Factor (LOF) [12]. For all these anomaly
detection methods, the default values are used for all parameters
except for the “outlier ratio,” which is set to 50%. That is
the same as the “true” outlier ratio in the synthetic datasets
to get relatively good results for the comparison methods.
Notice that our method does not need prior knowledge of the
outlier ratio. To validate the proposed regularization terms, the
baseline method, which only contains our loss function and
the temporal regularization term by setting λ=0 in Equation
(2), is also considered. For our CPM-P method, we set the
hyper-parameters in our methods by λ=1000, β=2, γ=10.
Performance: In this section, the effectiveness of the com-
parison methods and the proposed models are evaluated on
Dataset 1, Dataset 2, and Dataset 3, which respectively include
two, three, and four latent states. The (macro) F1 scores of
the predicted latent state (i.e.,Y, Ŷ ) and CDFD pattern (i.e.,Z)
assignments are shown in Table II. The method named with the
“+” sign in its name is a two-step method. For each column, the
two best performers are written in bold and the best performer
is underlined. As the results show, our method is always one of
the top-two performers in all (macro) F1 scores. Our method is



22% better on average than most the best comparison methods
except for the baseline method using our model without the
partial correlation-based regularization term. The distance-
based methods perform worse than the model-based methods,
as opposed to the dependency-based patterns in these datasets.
After intensively tuning the hyper-parameters, TICC achieves

the macro F1 score of 0.99 on Y assignments in Dataset 1,
but still fails in other datasets because Dataset 1 only contains
two latent states, which is a relatively simple dataset. For the
datasets with more than two latent states, the TICC method with
the L1 regularization term still suffers from differentiating the
latent states and the contrast patterns caused by the intervention.
GMM generally performs better than other comparison methods
on Y and Ŷ assignments. For Z assignments, all comparison
methods except for our methods and the baseline method do
not perform well with the highest score at 0.60, which is
still close to random guessing. Because the contrast patterns
highly depend on the latent state assignments, the imperfect
results on the latent state assignments lead to worse results for
the CDFD pattern assignments. As none of the comparison
methods can solve the CDFD pattern mining problem, we will
focus on analyzing the results of our method in the rest of this
section. The performance of the baseline is better than other
comparison methods, which validates the effectiveness of our
generative model proposed in Section III-A, but still worse
than our CPM-P method, which validates the usefulness of our
partial correlation-based regularization.

B. Evaluations on Driving Behavior Experiments

In this section, we apply our CPM-P method to a controlled
driving behavior experiment, which evaluates the influence of
an attention deficit hyperactivity disorder (ADHD) medicine
by contrasting driving behaviors. [13] [14].

In this controlled experiment, the same driver is asked to
drive twice on the same high-fidelity driving simulator, once
before and once after taking the ADHD medicine. Specifically,
the control multivariate time series is recorded from the
driving session before taking the ADHD medicine, and the
experimental multivariate time series is recorded from the
driving session after taking the medicine. The driving simulator
can record the multivariate observation in six dimensions, which
are Brake (B), steering Wheel (W), Accelerator (A), Velocity
(V), latitude, and longitude. We use the first three dimensions’
data (i.e., 3-D time series) to predict the latent states and
the contrast patterns, then use the velocity time series and
the latitude-longitude time series (i.e.,trajectory) to validate
the predictions by our method. We choose the number of
latent states K = 4 for this dataset and for any value of
K ≥ 4, the model still assigns most of the points to four
latent states. The other hyper-parameters are set as follows:
w=5, λ=1000, β=5, γ=10.

We first examine the latent state assignments (i.e., the Y and
Ŷ assignments) predicted by our model. The results are plotted
in Figure 3. Each of the predicted latent state plotted in the top
portion can be visually validated by the velocity time series
and the trajectory plotted in the bottom portion. For example,
for the velocity time series segments corresponding to the blue

latent state, the velocity first decreases to 0 and then increases,
which can be interpreted as “stopping at stop sign.” The green
segments in the velocity time series mostly increase or remain
stable, which can be interpreted as driving straight. All the
corners in both trajectories belong to the orange latent state,
which corresponds the “turning” latent state. The red latent
state is interpreted as deceleration, since red segments in the
velocity time series always decrease.

To examine the discovered contrast patterns, we use the
closeness centrality score [15] to determine the “significance”
of each feature Fi in the partial correlation network, where
the nodes are the features, the weights of the edge between
two features is the absolute value of the partial correlation
coefficient, F ∈ {W,A, V,B} denotes the variables, and i
denotes the relative index within the subsequences. For example,
the feature B0 denotes the feature corresponding to the brake
variable at the first observation of the subsequence. Then the
closeness centrality scores are computed for each node in the
partial correlation network. The higher the closeness centrality
score, the more significant the node is, and the more important
this feature is. Finally, we plot the zero-normalized closeness
centrality scores for each latent state in Figure 4. It is easily
seen that, first, each latent state has a unique “shape” in terms
of the relative importance of the features; second, the areas
under the same latent state mostly overlap, which validates the
partial correlation-based regularization for pairing the latent
states; and third, the differences of the centrality scores under
the same latent state is one way to visualize the contrast
pattern. In addition, the contrast patterns mined by our model
are highly interpretable. For example, the plots of the “Turning”
latent state suggest the steering wheel plays a relatively more
important role after taking the medication. It can be interpreted
as the driver being more likely to turn the vehicle by proactively
adjusting the steering wheel rather than adjusting the brake
and the accelerator after taking the ADHD medicine. This
contrast pattern indicates the driver turns the vehicle with less
variation of speed, which is a safer driving behavior [16]. For
another example, the plots of the “Deceleration” latent state
show that the centrality score of the feature B0 is higher before
taking the medicine, and the centrality scores of features B1

to B4 are higher after taking the medicine. This observation
suggests that 1) before taking the ADHD medicine, the driver
is likely to use the brake in the early stage of the deceleration
period but is unlikely to continue braking through the entire
deceleration period, which is a recognized as a typical ADHD
driving behavior [16]; 2) after taking the ADHD medicine,
the driver reduces the speed by using the brake in a more
consistent way during the deceleration, which is closer to a
normal driver’s driving behavior.

V. RELATED WORK

The work related to this research is summarized as follows:
Dependency-based multivariate time series clustering:
Most dependency-based time series clustering approaches such
as those based on an autoregressive moving average model [17],
Gaussian mixture model [8], or hidden Markov model [18],
typically consider the whole sequence rather than subsequence.



Fig. 3: ADHD medicine controlled experiment case study: The predicted latent states in the multivariate time series are plotted in the top
portion. Each predicted latent state plotted can be interpreted as a driving state, which can be validated in the lower portion.

Latent State 1: 
Stop and go

Latent State 2: 
Driving Straight

Latent State 4: 
Deceleration

Latent State 
3: Turning

Before taking the medicine After taking the medicine

Fig. 4: The contrast patterns are analyzed by the (zero-normalized)
closeness centrality scores of all features (e.g., B0). Under the same
latent state, the areas of before and after taking the medication mostly
overlap with each other. The non-overlapped areas indicate the driving
behaviors have been changed by the medicine.
Recently, Hallac et al. proposed the Toeplitz Inverse Covariance-
based Clustering (TICC) [2] method to cluster the subsequences
in a single multivariate time series according to connectivity
patterns estimated by a graphical lasso. However, TICC only
focuses on single time series, which neither considers the
relationship between the control and experimental time series
nor mines their contrast patterns.
Contrast pattern mining for time series: Research on
contrast pattern mining between two multivariate time series has
recently emerged. Researchers have explored multivariate time
series generated in functional MRI to mine the contrast patterns
by proposing various network inference models [3], [19]. For
instance, Lee et al. proposed a CNN based deep neural network
[19] to identify contrasting dependency networks inferred from
the entire time series. Similarly, Liu et al. proposed a contrast
graphical lasso model [3] for whole time series. The model
derives a single contrast dependency network that corresponds
to two multivariate time series. However, neither of these
methods considers the fact that the contrast patterns are only
meaningful while they are compared under the same latent
state in the subsequence level.

VI. CONCLUSION

In this paper, we define a new contrast pattern mining prob-
lem for controlled experiments with CMTS data. We propose
a novel CPM-P model to formulate the contrast pattern mining
problem as an optimization problem, which integrates latent
state identification, dynamic feature dependency inference, and
contrast pattern detection. Experiments on both synthetic and
real-world dataset validate its effectiveness and interpretability.
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